Li-Feng Zhou, Jia-Yang Li, Jian Peng, Li-Ying Liu, Hang Zhang, Yi-Song Wang, Yameng Fan, Jia-Zhao Wang, Tao Du
{"title":"封面图片,第 6 卷第 10 号,2024 年 10 月","authors":"Li-Feng Zhou, Jia-Yang Li, Jian Peng, Li-Ying Liu, Hang Zhang, Yi-Song Wang, Yameng Fan, Jia-Zhao Wang, Tao Du","doi":"10.1002/cey2.687","DOIUrl":null,"url":null,"abstract":"<p><b><i>Front cover image</i></b>: Phosphate cathodes in aqueous zinc-based batteries have garnered significant research interest for large-scale green energy storage. However, unclear mechanisms are hindering the progress of their research and application. In article number CEY2-2024-0147, various categories of phosphate materials used as zinc-based battery cathodes are summarized. The article discusses current advances and critical perspectives, aiming to elucidate the structural and chemical information related to Zn2+ storage mechanisms in phosphate cathodes using advanced characterization techniques.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.687","citationCount":"0","resultStr":"{\"title\":\"Cover Image, Volume 6, Number 10, October 2024\",\"authors\":\"Li-Feng Zhou, Jia-Yang Li, Jian Peng, Li-Ying Liu, Hang Zhang, Yi-Song Wang, Yameng Fan, Jia-Zhao Wang, Tao Du\",\"doi\":\"10.1002/cey2.687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b><i>Front cover image</i></b>: Phosphate cathodes in aqueous zinc-based batteries have garnered significant research interest for large-scale green energy storage. However, unclear mechanisms are hindering the progress of their research and application. In article number CEY2-2024-0147, various categories of phosphate materials used as zinc-based battery cathodes are summarized. The article discusses current advances and critical perspectives, aiming to elucidate the structural and chemical information related to Zn2+ storage mechanisms in phosphate cathodes using advanced characterization techniques.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.687\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.687\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.687","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Front cover image: Phosphate cathodes in aqueous zinc-based batteries have garnered significant research interest for large-scale green energy storage. However, unclear mechanisms are hindering the progress of their research and application. In article number CEY2-2024-0147, various categories of phosphate materials used as zinc-based battery cathodes are summarized. The article discusses current advances and critical perspectives, aiming to elucidate the structural and chemical information related to Zn2+ storage mechanisms in phosphate cathodes using advanced characterization techniques.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.