N. C. Privé, Matthew McLinden, Bing Lin, G. M. Heymsfield, Xia Cai, Steven Harrah
{"title":"观测系统模拟实验探索测量海洋表面压力的差分吸收雷达的潜在星载部署方案","authors":"N. C. Privé, Matthew McLinden, Bing Lin, G. M. Heymsfield, Xia Cai, Steven Harrah","doi":"10.1029/2024EA003791","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>A new technology for remote measurements of marine surface pressure has been proposed, employing a V-band differential absorption radar and a radiometric temperature sounder to calculate the total column atmospheric mass. Observing System Simulation Experiments (OSSEs) are performed to evaluate the potential impact of Spaceborne Marine Surface Pressure (SMSP) on Numerical Weather Prediction. These experiments build on prior efforts (Privé, McLinden, et al., 2023, https://doi.org/10.16993/tellusa.3254), but with an updated version of the OSSE framework and with more sophisticated simulation of the SMSP observations and a longer experiment period. Several different instrument configurations are compared, including both scanning and non-scanning orbits. SMSP impacts are calculated for analysis quality and forecast skill, and a forecast sensitivity observation impact tool is employed to place SMSP observations in context with the global observing network. The effects of rain contamination on observation quality are explored. Different magnitudes of simulated SMSP observation error are tested in the context of data assimilation to show the range of potential behaviors. Overall, SMSP observations are found to be most beneficial in the southern hemisphere extratropics, with statistically significant forecast improvements for the first 72 hr of the forecast. A constellation of four non-scanning SMSP satellites is found to outperform a single scanning instrument with a 250 km wide swath.</p>\n </section>\n </div>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003791","citationCount":"0","resultStr":"{\"title\":\"Observing System Simulation Experiments Exploring Potential Spaceborne Deployment Options for a Differential Absorption Radar Measuring Marine Surface Pressures\",\"authors\":\"N. C. Privé, Matthew McLinden, Bing Lin, G. M. Heymsfield, Xia Cai, Steven Harrah\",\"doi\":\"10.1029/2024EA003791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>A new technology for remote measurements of marine surface pressure has been proposed, employing a V-band differential absorption radar and a radiometric temperature sounder to calculate the total column atmospheric mass. Observing System Simulation Experiments (OSSEs) are performed to evaluate the potential impact of Spaceborne Marine Surface Pressure (SMSP) on Numerical Weather Prediction. These experiments build on prior efforts (Privé, McLinden, et al., 2023, https://doi.org/10.16993/tellusa.3254), but with an updated version of the OSSE framework and with more sophisticated simulation of the SMSP observations and a longer experiment period. Several different instrument configurations are compared, including both scanning and non-scanning orbits. SMSP impacts are calculated for analysis quality and forecast skill, and a forecast sensitivity observation impact tool is employed to place SMSP observations in context with the global observing network. The effects of rain contamination on observation quality are explored. Different magnitudes of simulated SMSP observation error are tested in the context of data assimilation to show the range of potential behaviors. Overall, SMSP observations are found to be most beneficial in the southern hemisphere extratropics, with statistically significant forecast improvements for the first 72 hr of the forecast. A constellation of four non-scanning SMSP satellites is found to outperform a single scanning instrument with a 250 km wide swath.</p>\\n </section>\\n </div>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003791\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003791\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003791","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Observing System Simulation Experiments Exploring Potential Spaceborne Deployment Options for a Differential Absorption Radar Measuring Marine Surface Pressures
A new technology for remote measurements of marine surface pressure has been proposed, employing a V-band differential absorption radar and a radiometric temperature sounder to calculate the total column atmospheric mass. Observing System Simulation Experiments (OSSEs) are performed to evaluate the potential impact of Spaceborne Marine Surface Pressure (SMSP) on Numerical Weather Prediction. These experiments build on prior efforts (Privé, McLinden, et al., 2023, https://doi.org/10.16993/tellusa.3254), but with an updated version of the OSSE framework and with more sophisticated simulation of the SMSP observations and a longer experiment period. Several different instrument configurations are compared, including both scanning and non-scanning orbits. SMSP impacts are calculated for analysis quality and forecast skill, and a forecast sensitivity observation impact tool is employed to place SMSP observations in context with the global observing network. The effects of rain contamination on observation quality are explored. Different magnitudes of simulated SMSP observation error are tested in the context of data assimilation to show the range of potential behaviors. Overall, SMSP observations are found to be most beneficial in the southern hemisphere extratropics, with statistically significant forecast improvements for the first 72 hr of the forecast. A constellation of four non-scanning SMSP satellites is found to outperform a single scanning instrument with a 250 km wide swath.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.