Kuldeep Pandey, E. Ceren Kalafatoglu Eyiguler, Robert G. Gillies, Donald W. Danskin, Daniel D. Billett, Andrew W. Yau, Glenn C. Hussey
{"title":"跨大气层无线电波普通模式和非常模式的差分延迟","authors":"Kuldeep Pandey, E. Ceren Kalafatoglu Eyiguler, Robert G. Gillies, Donald W. Danskin, Daniel D. Billett, Andrew W. Yau, Glenn C. Hussey","doi":"10.1029/2024JA032798","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>The terrestrial ionosphere is a birefringent medium that allows radio waves to propagate in two modes: the ordinary (O-mode) and the extraordinary (X-mode). A difference in the index of refraction of the two modes results in differential delay (mode delay) between the O- and X-modes of radio waves propagating through the ionosphere. Mode delays of transionospheric high frequency radio waves are determined using the Radio Receiver Instrument (RRI) onboard the Enhanced Polar Outflow Probe (e-POP) on the CASSIOPE/Swarm-E satellite. Experiments between RRI and the SuperDARN radar at Saskatoon, Canada show large variabilities in mode delays. The mode delays are nearly constant in some experiments but other experiments have large variations. The mode delay observations could not be explained by the distance between the e-POP satellite and the radar, the foF2 values along the satellite track, nor whether the satellite track was across or along a SuperDARN radar beam. A combination of RRI observations and ray-trace modeling are used to investigate the mode delay of transionospheric radio waves.</p>\n </section>\n </div>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Delay of Ordinary and Extraordinary Modes of Transionospheric Radio Waves\",\"authors\":\"Kuldeep Pandey, E. Ceren Kalafatoglu Eyiguler, Robert G. Gillies, Donald W. Danskin, Daniel D. Billett, Andrew W. Yau, Glenn C. Hussey\",\"doi\":\"10.1029/2024JA032798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>The terrestrial ionosphere is a birefringent medium that allows radio waves to propagate in two modes: the ordinary (O-mode) and the extraordinary (X-mode). A difference in the index of refraction of the two modes results in differential delay (mode delay) between the O- and X-modes of radio waves propagating through the ionosphere. Mode delays of transionospheric high frequency radio waves are determined using the Radio Receiver Instrument (RRI) onboard the Enhanced Polar Outflow Probe (e-POP) on the CASSIOPE/Swarm-E satellite. Experiments between RRI and the SuperDARN radar at Saskatoon, Canada show large variabilities in mode delays. The mode delays are nearly constant in some experiments but other experiments have large variations. The mode delay observations could not be explained by the distance between the e-POP satellite and the radar, the foF2 values along the satellite track, nor whether the satellite track was across or along a SuperDARN radar beam. A combination of RRI observations and ray-trace modeling are used to investigate the mode delay of transionospheric radio waves.</p>\\n </section>\\n </div>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"129 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032798\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032798","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
陆地电离层是一种双折射介质,允许无线电波以两种模式传播:普通模式(O 模式)和非凡模式(X 模式)。这两种模式的折射率不同,导致电离层中传播的无线电波的 O 模式和 X 模式之间产生不同的延迟(模式延迟)。跨电离层高频无线电波的模式延迟是利用 CASSIOPE/Swarm-E 卫星上的增强型极地外流探测器(e-POP)所搭载的无线电接收器仪器(RRI)测定的。RRI 与加拿大萨斯卡通的 SuperDARN 雷达之间的实验表明,模式延迟存在很大差异。在某些实验中,模式延迟几乎是恒定的,但在其他实验中却有很大的变化。e-POP 卫星与雷达之间的距离、卫星轨道沿线的 foF2 值,以及卫星轨道是穿过还是沿超级雷达网雷达波束,都无法解释模式延迟观测结果。结合 RRI 观测和射线轨迹建模,对跨电离层无线电波的模式延迟进行了研究。
Differential Delay of Ordinary and Extraordinary Modes of Transionospheric Radio Waves
The terrestrial ionosphere is a birefringent medium that allows radio waves to propagate in two modes: the ordinary (O-mode) and the extraordinary (X-mode). A difference in the index of refraction of the two modes results in differential delay (mode delay) between the O- and X-modes of radio waves propagating through the ionosphere. Mode delays of transionospheric high frequency radio waves are determined using the Radio Receiver Instrument (RRI) onboard the Enhanced Polar Outflow Probe (e-POP) on the CASSIOPE/Swarm-E satellite. Experiments between RRI and the SuperDARN radar at Saskatoon, Canada show large variabilities in mode delays. The mode delays are nearly constant in some experiments but other experiments have large variations. The mode delay observations could not be explained by the distance between the e-POP satellite and the radar, the foF2 values along the satellite track, nor whether the satellite track was across or along a SuperDARN radar beam. A combination of RRI observations and ray-trace modeling are used to investigate the mode delay of transionospheric radio waves.