使用气体示踪剂的带仪器排屋(联排别墅)的室内交换率和室外渗透率:室内粒子和气体的影响

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Indoor air Pub Date : 2024-10-21 DOI:10.1155/2024/9204433
James C. Matthews, M. Anwar H. Khan, Matthew D. Wright, Prem K. Perumal, Carl J. Percival, Ian D. Bull, Ian J. Craddock, Dudley E. Shallcross
{"title":"使用气体示踪剂的带仪器排屋(联排别墅)的室内交换率和室外渗透率:室内粒子和气体的影响","authors":"James C. Matthews,&nbsp;M. Anwar H. Khan,&nbsp;Matthew D. Wright,&nbsp;Prem K. Perumal,&nbsp;Carl J. Percival,&nbsp;Ian D. Bull,&nbsp;Ian J. Craddock,&nbsp;Dudley E. Shallcross","doi":"10.1155/2024/9204433","DOIUrl":null,"url":null,"abstract":"<p>Air exchange rate is a key determinant of indoor air quality which is highly variable within the rooms of a naturally ventilated terraced house (townhouse). Window opening can increase the air exchange rate, but internal door opening between rooms inside decreases the rate. Inert perfluorocarbon gas-phase tracers demonstrated flow within the house, and the penetration of tracers released outside into the house showed a strong dependence on wind speed and wind direction. Between experiments, it was found that the tracer could be detected within certain parts of the house weeks after the initial release, with implications for pollutants and their impact on the indoor environment. A limited number of reactive tracer experiments suggested an upper limit for indoor [OH]~1 × 10<sup>5</sup> molecule cm<sup>-3</sup> with up to 0.5 ppt of [NO<sub>3</sub>] estimated, leading to an estimated indoor lifetime for d5 isoprene of many hours. Ultrafine particulate matter generated in the kitchen travels throughout the house, and the persistence of elevated aerosol concentrations is seen even in well-ventilated rooms, with implications for particle exposure in the evening and during the night.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9204433","citationCount":"0","resultStr":"{\"title\":\"Indoor Exchange Rates and Penetration From Outdoors in an Instrumented Terraced House (Townhouse) Using Gas Tracers: Implications for Particles and Gases Indoors\",\"authors\":\"James C. Matthews,&nbsp;M. Anwar H. Khan,&nbsp;Matthew D. Wright,&nbsp;Prem K. Perumal,&nbsp;Carl J. Percival,&nbsp;Ian D. Bull,&nbsp;Ian J. Craddock,&nbsp;Dudley E. Shallcross\",\"doi\":\"10.1155/2024/9204433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Air exchange rate is a key determinant of indoor air quality which is highly variable within the rooms of a naturally ventilated terraced house (townhouse). Window opening can increase the air exchange rate, but internal door opening between rooms inside decreases the rate. Inert perfluorocarbon gas-phase tracers demonstrated flow within the house, and the penetration of tracers released outside into the house showed a strong dependence on wind speed and wind direction. Between experiments, it was found that the tracer could be detected within certain parts of the house weeks after the initial release, with implications for pollutants and their impact on the indoor environment. A limited number of reactive tracer experiments suggested an upper limit for indoor [OH]~1 × 10<sup>5</sup> molecule cm<sup>-3</sup> with up to 0.5 ppt of [NO<sub>3</sub>] estimated, leading to an estimated indoor lifetime for d5 isoprene of many hours. Ultrafine particulate matter generated in the kitchen travels throughout the house, and the persistence of elevated aerosol concentrations is seen even in well-ventilated rooms, with implications for particle exposure in the evening and during the night.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9204433\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/9204433\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9204433","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空气交换率是决定室内空气质量的关键因素,在自然通风的排屋(联排别墅)中,房间内的空气交换率变化很大。开窗可以提高空气交换率,但室内房间之间的内门开启则会降低空气交换率。惰性全氟碳化物气相示踪剂显示了房屋内的流动情况,而室外释放的示踪剂对房屋的渗透则与风速和风向有很大关系。在两次实验之间,人们发现在最初释放示踪剂数周后,仍可在房屋的某些部分检测到示踪剂,这对污染物及其对室内环境的影响产生了影响。数量有限的反应性示踪剂实验表明,室内[OH]的上限为 ~1 × 105 molecule cm-3,[NO3]估计可达 0.5 ppt,因此 d5 异构芘的室内寿命估计为数小时。厨房中产生的超细微粒物质会飘散到整个房间,即使在通风良好的房间中也会看到持续升高的气溶胶浓度,这对傍晚和夜间的微粒暴露有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Indoor Exchange Rates and Penetration From Outdoors in an Instrumented Terraced House (Townhouse) Using Gas Tracers: Implications for Particles and Gases Indoors

Indoor Exchange Rates and Penetration From Outdoors in an Instrumented Terraced House (Townhouse) Using Gas Tracers: Implications for Particles and Gases Indoors

Air exchange rate is a key determinant of indoor air quality which is highly variable within the rooms of a naturally ventilated terraced house (townhouse). Window opening can increase the air exchange rate, but internal door opening between rooms inside decreases the rate. Inert perfluorocarbon gas-phase tracers demonstrated flow within the house, and the penetration of tracers released outside into the house showed a strong dependence on wind speed and wind direction. Between experiments, it was found that the tracer could be detected within certain parts of the house weeks after the initial release, with implications for pollutants and their impact on the indoor environment. A limited number of reactive tracer experiments suggested an upper limit for indoor [OH]~1 × 105 molecule cm-3 with up to 0.5 ppt of [NO3] estimated, leading to an estimated indoor lifetime for d5 isoprene of many hours. Ultrafine particulate matter generated in the kitchen travels throughout the house, and the persistence of elevated aerosol concentrations is seen even in well-ventilated rooms, with implications for particle exposure in the evening and during the night.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信