解决二维分数 Volterra 积分微分方程的拼合法收敛性分析

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
S. Kazemi, A. Tari
{"title":"解决二维分数 Volterra 积分微分方程的拼合法收敛性分析","authors":"S. Kazemi,&nbsp;A. Tari","doi":"10.1007/s40995-024-01712-x","DOIUrl":null,"url":null,"abstract":"<div><p>The collocation method is one of the well-known numerical methods to solve different kinds of differential and integral equations, which has attracted the attention of many researchers in recent years. In Kazemi and Tari (Iran J Sci Technol Trans A Sci 46:1629–1639, 2022), the collocation method was extended to solve two-dimensional fractional Volterra integro-differential equations (2D-FVIDEs). In the current paper, which is a continuation of the mentioned work, the error and convergence analysis of it is investigated. Here, the existence and uniqueness of the solution are proved and a resolvent kernel representation is given to the solution. Then, the convergence of the method is proved in a theorem which also gives the convergence order. Finally, some numerical examples are given to confirm the theoretical results.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"48 6","pages":"1515 - 1527"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Analysis of the Collocation Method for Solving Two-dimensional Fractional Volterra Integro-differential Equations\",\"authors\":\"S. Kazemi,&nbsp;A. Tari\",\"doi\":\"10.1007/s40995-024-01712-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The collocation method is one of the well-known numerical methods to solve different kinds of differential and integral equations, which has attracted the attention of many researchers in recent years. In Kazemi and Tari (Iran J Sci Technol Trans A Sci 46:1629–1639, 2022), the collocation method was extended to solve two-dimensional fractional Volterra integro-differential equations (2D-FVIDEs). In the current paper, which is a continuation of the mentioned work, the error and convergence analysis of it is investigated. Here, the existence and uniqueness of the solution are proved and a resolvent kernel representation is given to the solution. Then, the convergence of the method is proved in a theorem which also gives the convergence order. Finally, some numerical examples are given to confirm the theoretical results.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"48 6\",\"pages\":\"1515 - 1527\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-024-01712-x\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01712-x","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

搭配法是解决各种微分方程和积分方程的著名数值方法之一,近年来吸引了众多研究人员的关注。Kazemi 和 Tari(Iran J Sci Technol Trans A Sci 46:1629-1639,2022 年)将拼位法扩展用于求解二维分数 Volterra 积分微分方程(2D-FVIDE)。本文是上述工作的继续,研究了其误差和收敛性分析。本文证明了解的存在性和唯一性,并给出了解的分解核表示。然后,通过定理证明了该方法的收敛性,并给出了收敛阶次。最后,给出了一些数值示例来证实理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Analysis of the Collocation Method for Solving Two-dimensional Fractional Volterra Integro-differential Equations

The collocation method is one of the well-known numerical methods to solve different kinds of differential and integral equations, which has attracted the attention of many researchers in recent years. In Kazemi and Tari (Iran J Sci Technol Trans A Sci 46:1629–1639, 2022), the collocation method was extended to solve two-dimensional fractional Volterra integro-differential equations (2D-FVIDEs). In the current paper, which is a continuation of the mentioned work, the error and convergence analysis of it is investigated. Here, the existence and uniqueness of the solution are proved and a resolvent kernel representation is given to the solution. Then, the convergence of the method is proved in a theorem which also gives the convergence order. Finally, some numerical examples are given to confirm the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信