电火花沉积和大功率脉冲磁控溅射产生的保护性异相涂层

IF 0.9 Q3 Engineering
E. I. Zamulaeva, A. E. Kudryashov, Ph. V. Kiryukhantsev-Korneev, E. A. Bashkirov, S. K. Mukanov, Yu. S. Pogozhev, E. A. Levashov
{"title":"电火花沉积和大功率脉冲磁控溅射产生的保护性异相涂层","authors":"E. I. Zamulaeva,&nbsp;A. E. Kudryashov,&nbsp;Ph. V. Kiryukhantsev-Korneev,&nbsp;E. A. Bashkirov,&nbsp;S. K. Mukanov,&nbsp;Yu. S. Pogozhev,&nbsp;E. A. Levashov","doi":"10.3103/S1068375524700182","DOIUrl":null,"url":null,"abstract":"<p>In order to increase the service life of critical products made of refractory metals, the most effective is the use of protective coatings based on oxidation-resistant ceramic materials. Using an electrode/target made of heterophase HfSi<sub>2</sub>–MoSi<sub>2</sub>–HfB<sub>2</sub> ceramics by electrospark deposition (ESD), high-power impulse magnetron sputtering (HIPIMS) technologies, as well as the combined ESD + HIPIMS technology, coatings were deposited onto molybdenum substrate (MCh-1 brand). Electrode materials and coatings were studied by the X-ray diffraction, the glow discharge optical emission spectroscopy, the X-ray spectral microanalysis, and the scanning electron microscopy. Combined ESD + HIPIMS technology made it possible to create a hard layer of oxidation-resistant ceramics on the surface of the substrate, which does not produce through cracks inherent in ESD coatings.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 4","pages":"607 - 617"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Heterophase Coatings Produced by Electrospark Deposition and High-Power Impulse Magnetron Sputtering\",\"authors\":\"E. I. Zamulaeva,&nbsp;A. E. Kudryashov,&nbsp;Ph. V. Kiryukhantsev-Korneev,&nbsp;E. A. Bashkirov,&nbsp;S. K. Mukanov,&nbsp;Yu. S. Pogozhev,&nbsp;E. A. Levashov\",\"doi\":\"10.3103/S1068375524700182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to increase the service life of critical products made of refractory metals, the most effective is the use of protective coatings based on oxidation-resistant ceramic materials. Using an electrode/target made of heterophase HfSi<sub>2</sub>–MoSi<sub>2</sub>–HfB<sub>2</sub> ceramics by electrospark deposition (ESD), high-power impulse magnetron sputtering (HIPIMS) technologies, as well as the combined ESD + HIPIMS technology, coatings were deposited onto molybdenum substrate (MCh-1 brand). Electrode materials and coatings were studied by the X-ray diffraction, the glow discharge optical emission spectroscopy, the X-ray spectral microanalysis, and the scanning electron microscopy. Combined ESD + HIPIMS technology made it possible to create a hard layer of oxidation-resistant ceramics on the surface of the substrate, which does not produce through cracks inherent in ESD coatings.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 4\",\"pages\":\"607 - 617\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524700182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524700182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了延长由难熔金属制成的关键产品的使用寿命,最有效的方法是使用基于抗氧化陶瓷材料的保护涂层。通过电火花沉积(ESD)、高功率脉冲磁控溅射(HIPIMS)以及 ESD + HIPIMS 组合技术,使用异相 HfSi2-MoSi2-HfB2 陶瓷制成的电极/靶材,在钼基板(MCh-1 牌)上沉积了涂层。通过 X 射线衍射、辉光放电光发射光谱、X 射线光谱显微分析和扫描电子显微镜对电极材料和涂层进行了研究。结合 ESD + HIPIMS 技术,可以在基底表面形成一层坚硬的抗氧化陶瓷层,不会产生 ESD 涂层固有的贯穿裂纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Protective Heterophase Coatings Produced by Electrospark Deposition and High-Power Impulse Magnetron Sputtering

Protective Heterophase Coatings Produced by Electrospark Deposition and High-Power Impulse Magnetron Sputtering

In order to increase the service life of critical products made of refractory metals, the most effective is the use of protective coatings based on oxidation-resistant ceramic materials. Using an electrode/target made of heterophase HfSi2–MoSi2–HfB2 ceramics by electrospark deposition (ESD), high-power impulse magnetron sputtering (HIPIMS) technologies, as well as the combined ESD + HIPIMS technology, coatings were deposited onto molybdenum substrate (MCh-1 brand). Electrode materials and coatings were studied by the X-ray diffraction, the glow discharge optical emission spectroscopy, the X-ray spectral microanalysis, and the scanning electron microscopy. Combined ESD + HIPIMS technology made it possible to create a hard layer of oxidation-resistant ceramics on the surface of the substrate, which does not produce through cracks inherent in ESD coatings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信