关于张量幂的(C^*\)代数的算子乘积状态

IF 0.8 Q2 MATHEMATICS
Emil Prodan
{"title":"关于张量幂的(C^*\\)代数的算子乘积状态","authors":"Emil Prodan","doi":"10.1007/s43036-024-00389-8","DOIUrl":null,"url":null,"abstract":"<div><p>The program of matrix product states on tensor powers <span>\\({\\mathcal {A}}^{\\otimes {\\mathbb {Z}}}\\)</span> of <span>\\(C^*\\)</span>-algebras is carried under the assumption that <span>\\({\\mathcal {A}}\\)</span> is an arbitrary nuclear C*-algebra. For any shift invariant state <span>\\(\\omega \\)</span>, we demonstrate the existence of an order kernel ideal <span>\\({\\mathcal {K}}_\\omega \\)</span>, whose quotient action reduces and factorizes the initial data <span>\\(({\\mathcal {A}}^{\\otimes {\\mathbb {Z}}}, \\omega )\\)</span> to the tuple <span>\\(({\\mathcal {A}},{\\mathcal {B}}_\\omega = {\\mathcal {A}}^{\\otimes {\\mathbb {N}}^\\times }/{\\mathcal {K}}_\\omega , {\\mathbb {E}}_\\omega : \\text{\\AA }\\otimes {\\mathcal {B}}_\\omega \\rightarrow {\\mathcal {B}}_\\omega , {\\bar{\\omega }}: {\\mathcal {B}}_\\omega \\rightarrow {\\mathbb {C}})\\)</span>, where <span>\\({\\mathcal {B}}_\\omega \\)</span> is an operator system and <span>\\({\\mathbb {E}}_\\omega \\)</span> and <span>\\({\\bar{\\omega }}\\)</span> are unital and completely positive maps. Reciprocally, given a (input) tuple <span>\\(({\\mathcal {A}},{\\mathcal {S}},{\\mathbb {E}},\\phi )\\)</span> that shares similar attributes, we supply an algorithm that produces a shift-invariant state on <span>\\({\\mathcal {A}}^{\\otimes {\\mathbb {Z}}}\\)</span>. We give sufficient conditions in which the so constructed states are ergodic and they reduce back to their input data. As examples, we formulate the input data that produces AKLT-type states, this time in the context of infinite dimensional site algebras <span>\\({\\mathcal {A}}\\)</span>, such as the <span>\\(C^*\\)</span>-algebras of discrete amenable groups.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator product states on tensor powers of \\\\(C^*\\\\)-algebras\",\"authors\":\"Emil Prodan\",\"doi\":\"10.1007/s43036-024-00389-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The program of matrix product states on tensor powers <span>\\\\({\\\\mathcal {A}}^{\\\\otimes {\\\\mathbb {Z}}}\\\\)</span> of <span>\\\\(C^*\\\\)</span>-algebras is carried under the assumption that <span>\\\\({\\\\mathcal {A}}\\\\)</span> is an arbitrary nuclear C*-algebra. For any shift invariant state <span>\\\\(\\\\omega \\\\)</span>, we demonstrate the existence of an order kernel ideal <span>\\\\({\\\\mathcal {K}}_\\\\omega \\\\)</span>, whose quotient action reduces and factorizes the initial data <span>\\\\(({\\\\mathcal {A}}^{\\\\otimes {\\\\mathbb {Z}}}, \\\\omega )\\\\)</span> to the tuple <span>\\\\(({\\\\mathcal {A}},{\\\\mathcal {B}}_\\\\omega = {\\\\mathcal {A}}^{\\\\otimes {\\\\mathbb {N}}^\\\\times }/{\\\\mathcal {K}}_\\\\omega , {\\\\mathbb {E}}_\\\\omega : \\\\text{\\\\AA }\\\\otimes {\\\\mathcal {B}}_\\\\omega \\\\rightarrow {\\\\mathcal {B}}_\\\\omega , {\\\\bar{\\\\omega }}: {\\\\mathcal {B}}_\\\\omega \\\\rightarrow {\\\\mathbb {C}})\\\\)</span>, where <span>\\\\({\\\\mathcal {B}}_\\\\omega \\\\)</span> is an operator system and <span>\\\\({\\\\mathbb {E}}_\\\\omega \\\\)</span> and <span>\\\\({\\\\bar{\\\\omega }}\\\\)</span> are unital and completely positive maps. Reciprocally, given a (input) tuple <span>\\\\(({\\\\mathcal {A}},{\\\\mathcal {S}},{\\\\mathbb {E}},\\\\phi )\\\\)</span> that shares similar attributes, we supply an algorithm that produces a shift-invariant state on <span>\\\\({\\\\mathcal {A}}^{\\\\otimes {\\\\mathbb {Z}}}\\\\)</span>. We give sufficient conditions in which the so constructed states are ergodic and they reduce back to their input data. As examples, we formulate the input data that produces AKLT-type states, this time in the context of infinite dimensional site algebras <span>\\\\({\\\\mathcal {A}}\\\\)</span>, such as the <span>\\\\(C^*\\\\)</span>-algebras of discrete amenable groups.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00389-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00389-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在假设\({\mathcal {A}}\) 是一个任意的核 C* 代数的前提下,进行了关于张量幂 \({\mathcal {A}}^{\otimes {\mathbb {Z}}\) 的矩阵乘积状态的研究。对于任何位移不变状态(({\mathcal {K}}_\omega \)),我们证明了一个阶核理想(({\mathcal {K}}_\omega \))的存在,它的商作用对初始数据(({\mathcal {A}}^{\otimes {\mathbb {Z}}、\)到元组(({\mathcal {A}},{\mathcal {B}}_\omega = {\mathcal {A}}^{\otimes {\mathbb {N}}^\times }/{\mathcal {K}}_\omega , {\mathbb {E}}_\omega :\text{AA}\otimes {\mathcal {B}}_\omega \rightarrow {\mathcal {B}}_\omega , {\bar{\omega }}:{其中 \({\mathcal {B}}_\omega \({\mathbb {E}}_\omega \)是一个算子系统,\({/mathbb {E}}_\omega \)和\({/bar/omega }}\) 是单值和完全正映射。反过来,给定一个(输入)元组(({\mathcal {A}},{\mathcal {S}},{\mathbb {E}},\phi )\ ),这个元组具有相似的属性,我们提供一种算法,在\({\mathcal {A}}^{\otimes {\mathbb {Z}}\) 上产生一个移位不变的状态。)我们给出了充分条件,在这些条件下,所构造的状态是遍历的,并且它们会还原为输入数据。作为例子,我们在无穷维站点代数(\({\mathcal {A}}\)的背景下提出了产生 AKLT 类型状态的输入数据,比如离散可亲群的\(C^*\)代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operator product states on tensor powers of \(C^*\)-algebras

The program of matrix product states on tensor powers \({\mathcal {A}}^{\otimes {\mathbb {Z}}}\) of \(C^*\)-algebras is carried under the assumption that \({\mathcal {A}}\) is an arbitrary nuclear C*-algebra. For any shift invariant state \(\omega \), we demonstrate the existence of an order kernel ideal \({\mathcal {K}}_\omega \), whose quotient action reduces and factorizes the initial data \(({\mathcal {A}}^{\otimes {\mathbb {Z}}}, \omega )\) to the tuple \(({\mathcal {A}},{\mathcal {B}}_\omega = {\mathcal {A}}^{\otimes {\mathbb {N}}^\times }/{\mathcal {K}}_\omega , {\mathbb {E}}_\omega : \text{\AA }\otimes {\mathcal {B}}_\omega \rightarrow {\mathcal {B}}_\omega , {\bar{\omega }}: {\mathcal {B}}_\omega \rightarrow {\mathbb {C}})\), where \({\mathcal {B}}_\omega \) is an operator system and \({\mathbb {E}}_\omega \) and \({\bar{\omega }}\) are unital and completely positive maps. Reciprocally, given a (input) tuple \(({\mathcal {A}},{\mathcal {S}},{\mathbb {E}},\phi )\) that shares similar attributes, we supply an algorithm that produces a shift-invariant state on \({\mathcal {A}}^{\otimes {\mathbb {Z}}}\). We give sufficient conditions in which the so constructed states are ergodic and they reduce back to their input data. As examples, we formulate the input data that produces AKLT-type states, this time in the context of infinite dimensional site algebras \({\mathcal {A}}\), such as the \(C^*\)-algebras of discrete amenable groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信