{"title":"炭黑:环氧基复合材料的导热强化剂","authors":"Bibekananda Sahoo, Pooja Patel, Bishnu Prasad Nanda","doi":"10.1007/s12034-024-03344-8","DOIUrl":null,"url":null,"abstract":"<div><p>Heat conduction plays a vital role in the performance and durability of any component. A wide range of applications are available that demand a good heat conduction ability. The property used to understand the heat conduction behaviour in a solid is called effective thermal conductivity (<i>K</i><sub>eff</sub>). It is recommended to reinforce an adequate amount of filler material in the matrix to increase the <i>K</i><sub>eff</sub> of the composite. The current study used carbon black (CB) particulates, a by-product of waste tyre pyrolysis, as the reinforcing agent in the epoxy resin. The composites are prepared by solution casting method with different volume % of filler. To study the thermal behaviour of samples, effective thermal conductivity, glass transition temperature (<i>T</i><sub>g</sub>) and co-efficient thermal expansion (CTE) are measured as a function of vol.% of filler. After plotting the experimental results, it is noticed that the <i>K</i><sub>eff</sub> and <i>T</i><sub>g</sub> are increased and CTE is decreased with an increase in vol.% of CB. The percolation threshold is also calculated from the <i>K</i><sub>eff</sub> <i>vs.</i> vol.% curve. Various mathematical models are incorporated to verify the experimental results of effective thermal conductivity. A finite element method (FEM) based numerical model is also developed to study the thermal conductivity behaviour of composites. ANSYS MECHANICIAL APDL is used for the FEM analysis. The FEM results showed a marginal variation from experimental data at 0.99 vol.% of CB. The reason behind this is the formation of voids during sample making, the effect of which is not taken in FEM.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon black: a thermally conductive reinforcement for epoxy based composite\",\"authors\":\"Bibekananda Sahoo, Pooja Patel, Bishnu Prasad Nanda\",\"doi\":\"10.1007/s12034-024-03344-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heat conduction plays a vital role in the performance and durability of any component. A wide range of applications are available that demand a good heat conduction ability. The property used to understand the heat conduction behaviour in a solid is called effective thermal conductivity (<i>K</i><sub>eff</sub>). It is recommended to reinforce an adequate amount of filler material in the matrix to increase the <i>K</i><sub>eff</sub> of the composite. The current study used carbon black (CB) particulates, a by-product of waste tyre pyrolysis, as the reinforcing agent in the epoxy resin. The composites are prepared by solution casting method with different volume % of filler. To study the thermal behaviour of samples, effective thermal conductivity, glass transition temperature (<i>T</i><sub>g</sub>) and co-efficient thermal expansion (CTE) are measured as a function of vol.% of filler. After plotting the experimental results, it is noticed that the <i>K</i><sub>eff</sub> and <i>T</i><sub>g</sub> are increased and CTE is decreased with an increase in vol.% of CB. The percolation threshold is also calculated from the <i>K</i><sub>eff</sub> <i>vs.</i> vol.% curve. Various mathematical models are incorporated to verify the experimental results of effective thermal conductivity. A finite element method (FEM) based numerical model is also developed to study the thermal conductivity behaviour of composites. ANSYS MECHANICIAL APDL is used for the FEM analysis. The FEM results showed a marginal variation from experimental data at 0.99 vol.% of CB. The reason behind this is the formation of voids during sample making, the effect of which is not taken in FEM.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"47 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03344-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03344-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Carbon black: a thermally conductive reinforcement for epoxy based composite
Heat conduction plays a vital role in the performance and durability of any component. A wide range of applications are available that demand a good heat conduction ability. The property used to understand the heat conduction behaviour in a solid is called effective thermal conductivity (Keff). It is recommended to reinforce an adequate amount of filler material in the matrix to increase the Keff of the composite. The current study used carbon black (CB) particulates, a by-product of waste tyre pyrolysis, as the reinforcing agent in the epoxy resin. The composites are prepared by solution casting method with different volume % of filler. To study the thermal behaviour of samples, effective thermal conductivity, glass transition temperature (Tg) and co-efficient thermal expansion (CTE) are measured as a function of vol.% of filler. After plotting the experimental results, it is noticed that the Keff and Tg are increased and CTE is decreased with an increase in vol.% of CB. The percolation threshold is also calculated from the Keffvs. vol.% curve. Various mathematical models are incorporated to verify the experimental results of effective thermal conductivity. A finite element method (FEM) based numerical model is also developed to study the thermal conductivity behaviour of composites. ANSYS MECHANICIAL APDL is used for the FEM analysis. The FEM results showed a marginal variation from experimental data at 0.99 vol.% of CB. The reason behind this is the formation of voids during sample making, the effect of which is not taken in FEM.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.