热电材料 Schwarzites Cn 的卓越能量吸收特性

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Ming Yang, Chenyang Yu, Xu Zhu, Juanna Ren, Saeed D. Alahmari, Zeinhom M. El-Bahy, Mohamed Kallel, Mukun He, Ziman Wang, Xueming Yang, Jiang Guo, Hang Zhang
{"title":"热电材料 Schwarzites Cn 的卓越能量吸收特性","authors":"Ming Yang,&nbsp;Chenyang Yu,&nbsp;Xu Zhu,&nbsp;Juanna Ren,&nbsp;Saeed D. Alahmari,&nbsp;Zeinhom M. El-Bahy,&nbsp;Mohamed Kallel,&nbsp;Mukun He,&nbsp;Ziman Wang,&nbsp;Xueming Yang,&nbsp;Jiang Guo,&nbsp;Hang Zhang","doi":"10.1007/s42114-024-00997-1","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon nanotubes exhibit excellent mechanical properties and hold immense promise for diverse applications. Based on the first nature principle, we investigate the mechanical properties, thermoelectric properties, and energy absorption behavior of the three-dimensional carbon cage thermoelectric material Schwarzites C<sub>n</sub> under uniaxial tensile and compressive loading. Our investigation unveils that Schwarzites C<sub>n</sub> possess a robust compressive strain threshold, enduring deformation by more than 50%. The large pore structure and multiple ring defects of Schwarzites result in a maximum Young’s modulus (Schwarzites C<sub>11</sub>) of 91.01 Gpa. The specific energy absorption (SEA) values indicate that Schwarzites C<sub>n</sub> can be used as a good energy-absorbing material, with an SEA of 55.89 MJ/kg for Schwarzites C<sub>6</sub> at 50% strain in uniaxial compression. At 300 K, Schwarzites C<sub>8</sub> with the highest <i>zT</i> (4.5) increases its <i>zT</i> to 4.83 at 5% tensile strain, an increase of 7.3%. The maximum increase in <i>zT</i> is observed in Schwarzites C<sub>9</sub>, from 0.249 to 0.34, with an increase of 36.5%. This study opens up ideas for the design and application of outstanding mechanical performance carbon materials by deriving three-dimensional carbon cage structures from carbon nanotubes.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excellent energy absorption properties of the thermoelectric material Schwarzites Cn\",\"authors\":\"Ming Yang,&nbsp;Chenyang Yu,&nbsp;Xu Zhu,&nbsp;Juanna Ren,&nbsp;Saeed D. Alahmari,&nbsp;Zeinhom M. El-Bahy,&nbsp;Mohamed Kallel,&nbsp;Mukun He,&nbsp;Ziman Wang,&nbsp;Xueming Yang,&nbsp;Jiang Guo,&nbsp;Hang Zhang\",\"doi\":\"10.1007/s42114-024-00997-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon nanotubes exhibit excellent mechanical properties and hold immense promise for diverse applications. Based on the first nature principle, we investigate the mechanical properties, thermoelectric properties, and energy absorption behavior of the three-dimensional carbon cage thermoelectric material Schwarzites C<sub>n</sub> under uniaxial tensile and compressive loading. Our investigation unveils that Schwarzites C<sub>n</sub> possess a robust compressive strain threshold, enduring deformation by more than 50%. The large pore structure and multiple ring defects of Schwarzites result in a maximum Young’s modulus (Schwarzites C<sub>11</sub>) of 91.01 Gpa. The specific energy absorption (SEA) values indicate that Schwarzites C<sub>n</sub> can be used as a good energy-absorbing material, with an SEA of 55.89 MJ/kg for Schwarzites C<sub>6</sub> at 50% strain in uniaxial compression. At 300 K, Schwarzites C<sub>8</sub> with the highest <i>zT</i> (4.5) increases its <i>zT</i> to 4.83 at 5% tensile strain, an increase of 7.3%. The maximum increase in <i>zT</i> is observed in Schwarzites C<sub>9</sub>, from 0.249 to 0.34, with an increase of 36.5%. This study opens up ideas for the design and application of outstanding mechanical performance carbon materials by deriving three-dimensional carbon cage structures from carbon nanotubes.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00997-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00997-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

碳纳米管具有优异的机械性能,在各种应用领域前景广阔。基于第一性原理,我们研究了三维碳笼热电材料 Schwarzites Cn 在单轴拉伸和压缩载荷下的力学性能、热电性能和能量吸收行为。我们的研究发现,Schwarzites Cn 具有强大的压缩应变阈值,可承受 50% 以上的变形。施瓦茨岩的大孔隙结构和多环状缺陷使其最大杨氏模量(施瓦茨岩 C11)达到 91.01 Gpa。比能量吸收(SEA)值表明,Schwarzites Cn 可用作一种良好的能量吸收材料,在单轴压缩条件下,Schwarzites C6 在 50%应变时的比能量吸收为 55.89 MJ/kg。在 300 K 下,zT 最高(4.5)的 Schwarzites C8 在拉伸应变为 5%时,zT 增至 4.83,增幅为 7.3%。zT 的最大增幅出现在 Schwarzites C9 中,从 0.249 增至 0.34,增幅为 36.5%。这项研究通过从碳纳米管中衍生出三维碳笼结构,为设计和应用具有优异机械性能的碳材料开辟了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Excellent energy absorption properties of the thermoelectric material Schwarzites Cn

Excellent energy absorption properties of the thermoelectric material Schwarzites Cn

Carbon nanotubes exhibit excellent mechanical properties and hold immense promise for diverse applications. Based on the first nature principle, we investigate the mechanical properties, thermoelectric properties, and energy absorption behavior of the three-dimensional carbon cage thermoelectric material Schwarzites Cn under uniaxial tensile and compressive loading. Our investigation unveils that Schwarzites Cn possess a robust compressive strain threshold, enduring deformation by more than 50%. The large pore structure and multiple ring defects of Schwarzites result in a maximum Young’s modulus (Schwarzites C11) of 91.01 Gpa. The specific energy absorption (SEA) values indicate that Schwarzites Cn can be used as a good energy-absorbing material, with an SEA of 55.89 MJ/kg for Schwarzites C6 at 50% strain in uniaxial compression. At 300 K, Schwarzites C8 with the highest zT (4.5) increases its zT to 4.83 at 5% tensile strain, an increase of 7.3%. The maximum increase in zT is observed in Schwarzites C9, from 0.249 to 0.34, with an increase of 36.5%. This study opens up ideas for the design and application of outstanding mechanical performance carbon materials by deriving three-dimensional carbon cage structures from carbon nanotubes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信