高通量筛选 ZnIn2S4 中用于光催化的单原子辅助催化剂†。

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Md Habibur Rahman, Yujie Sun and Arun Mannodi-Kanakkithodi
{"title":"高通量筛选 ZnIn2S4 中用于光催化的单原子辅助催化剂†。","authors":"Md Habibur Rahman, Yujie Sun and Arun Mannodi-Kanakkithodi","doi":"10.1039/D4MA00616J","DOIUrl":null,"url":null,"abstract":"<p >In recent years, ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> (ZIS) has garnered attention as a promising photocatalyst due to its attractive properties. However, its performance is hindered by its restricted range of visible light absorption and the rapid recombination of photoinduced holes and electrons. Single-atom co-catalysts (SACs) can improve photocatalytic activity by providing highly active sites for reactions, enhancing charge separation efficiency, and reducing the recombination rate of photo-generated carriers. In this work, we perform high-throughput density functional theory (DFT) computations to search for SACs in ZIS encompassing 3d, 4d, and 5d transition metals as well as lanthanides, considering both substitutional and interstitial sites. For a total of 172 SACs, defect formation energy (DFE) is computed as a function of chemical potential, charge, and Fermi level (<em>E</em><small><sub>F</sub></small>), leading to the identification of low energy dopants and their corresponding shallow or deep defect levels. Statistical data analysis shows that DFE is highly correlated with the difference in electron affinity between the host (Zn/In/S) atom and the SAC, followed by the electronegativity and boiling point. Among the 60 lowest energy SACs, Co<small><sub>In</sub></small>, Yb<small><sub>i</sub></small>, Tc<small><sub>Zn</sub></small>, Au<small><sub>S</sub></small>, La<small><sub>i</sub></small>, Eu<small><sub>i</sub></small>, Au<small><sub>i</sub></small>, Ta<small><sub>In</sub></small>, Hf<small><sub>In</sub></small>, Zr<small><sub>In</sub></small>, and Ni<small><sub>Zn</sub></small> lead to a lowering of the Gibbs free energy for hydrogen evolution reaction, improving upon previous ZIS results. The computational dataset and insights from this work promise to accelerate the experimental design of novel dopants in ZIS with optimized properties for photocatalysis and environmental remediation.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8673-8683"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00616j?page=search","citationCount":"0","resultStr":"{\"title\":\"High-throughput screening of single atom co-catalysts in ZnIn2S4 for photocatalysis†\",\"authors\":\"Md Habibur Rahman, Yujie Sun and Arun Mannodi-Kanakkithodi\",\"doi\":\"10.1039/D4MA00616J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> (ZIS) has garnered attention as a promising photocatalyst due to its attractive properties. However, its performance is hindered by its restricted range of visible light absorption and the rapid recombination of photoinduced holes and electrons. Single-atom co-catalysts (SACs) can improve photocatalytic activity by providing highly active sites for reactions, enhancing charge separation efficiency, and reducing the recombination rate of photo-generated carriers. In this work, we perform high-throughput density functional theory (DFT) computations to search for SACs in ZIS encompassing 3d, 4d, and 5d transition metals as well as lanthanides, considering both substitutional and interstitial sites. For a total of 172 SACs, defect formation energy (DFE) is computed as a function of chemical potential, charge, and Fermi level (<em>E</em><small><sub>F</sub></small>), leading to the identification of low energy dopants and their corresponding shallow or deep defect levels. Statistical data analysis shows that DFE is highly correlated with the difference in electron affinity between the host (Zn/In/S) atom and the SAC, followed by the electronegativity and boiling point. Among the 60 lowest energy SACs, Co<small><sub>In</sub></small>, Yb<small><sub>i</sub></small>, Tc<small><sub>Zn</sub></small>, Au<small><sub>S</sub></small>, La<small><sub>i</sub></small>, Eu<small><sub>i</sub></small>, Au<small><sub>i</sub></small>, Ta<small><sub>In</sub></small>, Hf<small><sub>In</sub></small>, Zr<small><sub>In</sub></small>, and Ni<small><sub>Zn</sub></small> lead to a lowering of the Gibbs free energy for hydrogen evolution reaction, improving upon previous ZIS results. The computational dataset and insights from this work promise to accelerate the experimental design of novel dopants in ZIS with optimized properties for photocatalysis and environmental remediation.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 21\",\"pages\":\" 8673-8683\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00616j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00616j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00616j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,ZnIn2S4(ZIS)因其极具吸引力的特性而成为一种前景广阔的光催化剂,备受关注。然而,由于其对可见光的吸收范围有限以及光诱导空穴和电子的快速重组,其性能受到了阻碍。单原子辅助催化剂(SAC)可为反应提供高活性位点,提高电荷分离效率,降低光生载流子的重组率,从而提高光催化活性。在这项工作中,我们进行了高通量密度泛函理论(DFT)计算,以寻找 ZIS 中的 SACs,包括 3d、4d 和 5d 过渡金属以及镧系元素,同时考虑了取代位点和间隙位点。共计算了 172 种 SAC 的缺陷形成能(DFE),作为化学势、电荷和费米级(EF)的函数,从而确定了低能掺杂物及其相应的浅缺陷或深缺陷级。统计数据分析显示,DFE 与主(Zn/In/S)原子和 SAC 之间的电子亲和力差异高度相关,其次是电负性和沸点。在 60 种能量最低的 SAC 中,CoIn、Ybi、TcZn、AuS、Lai、Eui、Aui、TaIn、HfIn、ZrIn 和 NiZn 可降低氢进化反应的吉布斯自由能,从而改进了之前的 ZIS 结果。这项工作的计算数据集和见解有望加速 ZIS 中新型掺杂剂的实验设计,这些掺杂剂具有光催化和环境修复的优化特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-throughput screening of single atom co-catalysts in ZnIn2S4 for photocatalysis†

High-throughput screening of single atom co-catalysts in ZnIn2S4 for photocatalysis†

In recent years, ZnIn2S4 (ZIS) has garnered attention as a promising photocatalyst due to its attractive properties. However, its performance is hindered by its restricted range of visible light absorption and the rapid recombination of photoinduced holes and electrons. Single-atom co-catalysts (SACs) can improve photocatalytic activity by providing highly active sites for reactions, enhancing charge separation efficiency, and reducing the recombination rate of photo-generated carriers. In this work, we perform high-throughput density functional theory (DFT) computations to search for SACs in ZIS encompassing 3d, 4d, and 5d transition metals as well as lanthanides, considering both substitutional and interstitial sites. For a total of 172 SACs, defect formation energy (DFE) is computed as a function of chemical potential, charge, and Fermi level (EF), leading to the identification of low energy dopants and their corresponding shallow or deep defect levels. Statistical data analysis shows that DFE is highly correlated with the difference in electron affinity between the host (Zn/In/S) atom and the SAC, followed by the electronegativity and boiling point. Among the 60 lowest energy SACs, CoIn, Ybi, TcZn, AuS, Lai, Eui, Aui, TaIn, HfIn, ZrIn, and NiZn lead to a lowering of the Gibbs free energy for hydrogen evolution reaction, improving upon previous ZIS results. The computational dataset and insights from this work promise to accelerate the experimental design of novel dopants in ZIS with optimized properties for photocatalysis and environmental remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信