用于汽车雷达干扰缓解的变量信号分离技术

Mate Toth;Erik Leitinger;Klaus Witrisal
{"title":"用于汽车雷达干扰缓解的变量信号分离技术","authors":"Mate Toth;Erik Leitinger;Klaus Witrisal","doi":"10.1109/TRS.2024.3477353","DOIUrl":null,"url":null,"abstract":"Algorithms for mutual interference mitigation and object parameter estimation are a key enabler for automotive applications of frequency-modulated continuous-wave (FMCW) radar. In this article, we introduce a signal separation method to detect and estimate radar object parameters while jointly estimating and successively canceling the interference signal. The underlying signal model poses a challenge since both the coherent radar echo and the noncoherent interference influenced by individual multipath propagation channels must be considered. Under certain assumptions, the model is described as a superposition of multipath channels weighted by parametric interference chirp envelopes. Inspired by sparse Bayesian learning (SBL), we employ an augmented probabilistic model that uses a hierarchical gamma-Gaussian prior model for each multipath channel. Based on this, an iterative inference algorithm is derived using the variational expectation-maximization (EM) methodology. The algorithm is statistically evaluated in terms of object parameter estimation accuracy and robustness, indicating that it is fundamentally capable of achieving the Cramer-Rao lower bound (CRLB) with respect to the accuracy of object estimates and it closely follows the radar performance achieved when no interference is present.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"1007-1026"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711887","citationCount":"0","resultStr":"{\"title\":\"Variational Signal Separation for Automotive Radar Interference Mitigation\",\"authors\":\"Mate Toth;Erik Leitinger;Klaus Witrisal\",\"doi\":\"10.1109/TRS.2024.3477353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithms for mutual interference mitigation and object parameter estimation are a key enabler for automotive applications of frequency-modulated continuous-wave (FMCW) radar. In this article, we introduce a signal separation method to detect and estimate radar object parameters while jointly estimating and successively canceling the interference signal. The underlying signal model poses a challenge since both the coherent radar echo and the noncoherent interference influenced by individual multipath propagation channels must be considered. Under certain assumptions, the model is described as a superposition of multipath channels weighted by parametric interference chirp envelopes. Inspired by sparse Bayesian learning (SBL), we employ an augmented probabilistic model that uses a hierarchical gamma-Gaussian prior model for each multipath channel. Based on this, an iterative inference algorithm is derived using the variational expectation-maximization (EM) methodology. The algorithm is statistically evaluated in terms of object parameter estimation accuracy and robustness, indicating that it is fundamentally capable of achieving the Cramer-Rao lower bound (CRLB) with respect to the accuracy of object estimates and it closely follows the radar performance achieved when no interference is present.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"2 \",\"pages\":\"1007-1026\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711887\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10711887/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10711887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相互干扰缓解和目标参数估计算法是频率调制连续波(FMCW)雷达汽车应用的关键因素。本文介绍了一种信号分离方法,用于检测和估计雷达目标参数,同时联合估计和连续消除干扰信号。由于必须同时考虑相干雷达回波和受各个多径传播信道影响的非相干干扰,因此基本信号模型是一个挑战。在某些假设条件下,该模型被描述为由参数干扰啁啾包络加权的多径信道的叠加。受稀疏贝叶斯学习(SBL)的启发,我们采用了一种增强概率模型,对每个多径信道使用分层伽马-高斯先验模型。在此基础上,利用变异期望最大化(EM)方法推导出一种迭代推理算法。从对象参数估计精度和鲁棒性方面对该算法进行了统计评估,结果表明,该算法在对象估计精度方面基本能够达到克拉默-拉奥下限(CRLB),并且与无干扰情况下的雷达性能非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Signal Separation for Automotive Radar Interference Mitigation
Algorithms for mutual interference mitigation and object parameter estimation are a key enabler for automotive applications of frequency-modulated continuous-wave (FMCW) radar. In this article, we introduce a signal separation method to detect and estimate radar object parameters while jointly estimating and successively canceling the interference signal. The underlying signal model poses a challenge since both the coherent radar echo and the noncoherent interference influenced by individual multipath propagation channels must be considered. Under certain assumptions, the model is described as a superposition of multipath channels weighted by parametric interference chirp envelopes. Inspired by sparse Bayesian learning (SBL), we employ an augmented probabilistic model that uses a hierarchical gamma-Gaussian prior model for each multipath channel. Based on this, an iterative inference algorithm is derived using the variational expectation-maximization (EM) methodology. The algorithm is statistically evaluated in terms of object parameter estimation accuracy and robustness, indicating that it is fundamentally capable of achieving the Cramer-Rao lower bound (CRLB) with respect to the accuracy of object estimates and it closely follows the radar performance achieved when no interference is present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信