通过时空语境转换器 RL 实现双臂长视距操纵

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Ji-Heon Oh;Ismael Espinoza;Danbi Jung;Tae-Seong Kim
{"title":"通过时空语境转换器 RL 实现双臂长视距操纵","authors":"Ji-Heon Oh;Ismael Espinoza;Danbi Jung;Tae-Seong Kim","doi":"10.1109/LRA.2024.3484167","DOIUrl":null,"url":null,"abstract":"Dual-arm robots can perform bimanual long-horizon (LH) manipulation, surpassing the capabilities of single-arm robots. However, bimanual LH tasks are challenging for robot intelligence due to the complexity of long sequence variables and multi-agent interactions. While Multi-Agent Reinforcement Learning (MARL) has shown promising results in agent interactions, these models struggle with sequential LH tasks due to limitations in credit assignment, vanishing memory, and the exploration-exploitation trade-off. This paper introduces a novel dual-arm robot intelligence framework, Temporal-Context Transformer Reinforcement Learning (TC-TRL), which integrates both a hybrid offline-online policy and imitation learning. TC-TRL leverages the attention mechanism to identify relevant temporal-context information from the LH observations space, updating the encoder value function and generating an optimal actions sequence using a decoder module, which uses demonstration guidance during online training. TC-TRL is tested on six bimanual tasks, and its performance is compared against five baseline RLs: MAPPO, HAPPO, IPPO, MAT, and DA-MAT. The results show that TC-TRL outperforms the three PPO-based RLs with an average success rate of 63.46%, 42.23% against MAT, and 30.91% for DA-MAT.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"10898-10905"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimanual Long-Horizon Manipulation Via Temporal-Context Transformer RL\",\"authors\":\"Ji-Heon Oh;Ismael Espinoza;Danbi Jung;Tae-Seong Kim\",\"doi\":\"10.1109/LRA.2024.3484167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual-arm robots can perform bimanual long-horizon (LH) manipulation, surpassing the capabilities of single-arm robots. However, bimanual LH tasks are challenging for robot intelligence due to the complexity of long sequence variables and multi-agent interactions. While Multi-Agent Reinforcement Learning (MARL) has shown promising results in agent interactions, these models struggle with sequential LH tasks due to limitations in credit assignment, vanishing memory, and the exploration-exploitation trade-off. This paper introduces a novel dual-arm robot intelligence framework, Temporal-Context Transformer Reinforcement Learning (TC-TRL), which integrates both a hybrid offline-online policy and imitation learning. TC-TRL leverages the attention mechanism to identify relevant temporal-context information from the LH observations space, updating the encoder value function and generating an optimal actions sequence using a decoder module, which uses demonstration guidance during online training. TC-TRL is tested on six bimanual tasks, and its performance is compared against five baseline RLs: MAPPO, HAPPO, IPPO, MAT, and DA-MAT. The results show that TC-TRL outperforms the three PPO-based RLs with an average success rate of 63.46%, 42.23% against MAT, and 30.91% for DA-MAT.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"10898-10905\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10723805/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723805/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

双臂机器人可以执行双臂长视距(LH)操纵,超越了单臂机器人的能力。然而,由于长序列变量和多代理交互的复杂性,双臂长视距任务对机器人智能来说具有挑战性。虽然多代理强化学习(MARL)在代理互动方面取得了可喜的成果,但由于学分分配、记忆消失和探索-开发权衡等方面的限制,这些模型在处理顺序 LH 任务时却举步维艰。本文介绍了一种新颖的双臂机器人智能框架--时间-情境转换强化学习(Temporal-Context Transformer Reinforcement Learning,TC-TRL),它集成了离线-在线混合策略和模仿学习。TC-TRL 利用注意力机制从 LH 观察空间中识别相关的时间-语境信息,更新编码器值函数,并通过解码器模块生成最佳行动序列,解码器模块在在线训练期间使用示范指导。TC-TRL 在六项双臂任务中进行了测试,并将其性能与五种基准 RL 进行了比较:MAPPO、HAPPO、IPPO、MAT 和 DA-MAT。结果表明,TC-TRL 的平均成功率为 63.46%,优于三种基于 PPO 的 RL;与 MAT 相比,TC-TRL 的平均成功率为 42.23%,与 DA-MAT 相比,TC-TRL 的平均成功率为 30.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimanual Long-Horizon Manipulation Via Temporal-Context Transformer RL
Dual-arm robots can perform bimanual long-horizon (LH) manipulation, surpassing the capabilities of single-arm robots. However, bimanual LH tasks are challenging for robot intelligence due to the complexity of long sequence variables and multi-agent interactions. While Multi-Agent Reinforcement Learning (MARL) has shown promising results in agent interactions, these models struggle with sequential LH tasks due to limitations in credit assignment, vanishing memory, and the exploration-exploitation trade-off. This paper introduces a novel dual-arm robot intelligence framework, Temporal-Context Transformer Reinforcement Learning (TC-TRL), which integrates both a hybrid offline-online policy and imitation learning. TC-TRL leverages the attention mechanism to identify relevant temporal-context information from the LH observations space, updating the encoder value function and generating an optimal actions sequence using a decoder module, which uses demonstration guidance during online training. TC-TRL is tested on six bimanual tasks, and its performance is compared against five baseline RLs: MAPPO, HAPPO, IPPO, MAT, and DA-MAT. The results show that TC-TRL outperforms the three PPO-based RLs with an average success rate of 63.46%, 42.23% against MAT, and 30.91% for DA-MAT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信