应用于多受试者大脑连接性的群体整合动态因子模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Younghoon Kim, Zachary F. Fisher, Vladas Pipiras
{"title":"应用于多受试者大脑连接性的群体整合动态因子模型","authors":"Younghoon Kim,&nbsp;Zachary F. Fisher,&nbsp;Vladas Pipiras","doi":"10.1002/bimj.202300370","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity\",\"authors\":\"Younghoon Kim,&nbsp;Zachary F. Fisher,&nbsp;Vladas Pipiras\",\"doi\":\"10.1002/bimj.202300370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300370\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300370","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了一种基于动态因子模型的多受试者时间序列数据组级分析的新框架,称为 GRoup Integrative DYnamic factor (GRIDY) 模型。该框架通过综合考虑群体空间信息和个体时间动态,来识别和描述两个预定群体之间的对象间相似性和差异性。此外,它还能通过对每个受试者采用不同的模型配置来识别受试者内部随时间变化的相似性和差异性。在方法上,该框架结合了一种新颖的基于主角的秩选择算法和一种非迭代综合分析框架。受同步成分分析的启发,这种方法还能重建具有灵活协方差结构的可识别潜在因子序列。通过在各种情况下进行模拟,对 GRIDY 模型的性能进行了评估。此外,还介绍了一种应用方法,用于比较从多个自闭症谱系障碍受试者和对照组收集的静息态功能磁共振成像数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity

This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信