{"title":"应用于多受试者大脑连接性的群体整合动态因子模型","authors":"Younghoon Kim, Zachary F. Fisher, Vladas Pipiras","doi":"10.1002/bimj.202300370","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</p></div>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity\",\"authors\":\"Younghoon Kim, Zachary F. Fisher, Vladas Pipiras\",\"doi\":\"10.1002/bimj.202300370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.</p></div>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300370\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300370","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
这项工作介绍了一种基于动态因子模型的多受试者时间序列数据组级分析的新框架,称为 GRoup Integrative DYnamic factor (GRIDY) 模型。该框架通过综合考虑群体空间信息和个体时间动态,来识别和描述两个预定群体之间的对象间相似性和差异性。此外,它还能通过对每个受试者采用不同的模型配置来识别受试者内部随时间变化的相似性和差异性。在方法上,该框架结合了一种新颖的基于主角的秩选择算法和一种非迭代综合分析框架。受同步成分分析的启发,这种方法还能重建具有灵活协方差结构的可识别潜在因子序列。通过在各种情况下进行模拟,对 GRIDY 模型的性能进行了评估。此外,还介绍了一种应用方法,用于比较从多个自闭症谱系障碍受试者和对照组收集的静息态功能磁共振成像数据。
Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity
This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.