{"title":"人类胎儿大脑的体外磁共振成像。","authors":"Ruike Chen, Chen Tian, Keqing Zhu, Guoliang Ren, Aimin Bao, Yi Shen, Xiao Li, Yaoyao Zhang, Wenying Qiu, Chao Ma, Jing Zhang, Dan Wu","doi":"10.1159/000542276","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The fetal brain undergoes a dynamic process of development during gestation, marked by well-orchestrated events such as neuronal proliferation, migration, axonal outgrowth, and dendritic arborization, mainly elucidated through histological studies. Ex vivo magnetic resonance imaging (MRI) has emerged as a useful tool for 3D visualization of the developing fetal brain, serving as a complementary tool to traditional histology.</p><p><strong>Summary: </strong>In this review, we summarized the commonly employed ex vivo MRI techniques and their advances in fetal brain imaging, as well as a standard protocol for postmortem fetal brain specimen collection and fixation. We then provided an overview of ex vivo MRI-based studies on the fetal brain.</p><p><strong>Key messages: </strong>According to our review, ex vivo T1- or T2-weighted structural MRI has contributed to the characterization of the anatomy of transient neuronal proliferative zones, the basal ganglia, and the cortex. Diffusion MRI related techniques, such as diffusion tensor imaging and tractography, have helped to investigate the microstructural patterns of fetal brain tissue, as well as the early emergence and development of neuronal migration pathways and white matter bundles. Ex vivo MRI findings have shown strong histological correlations, supporting the potential of MRI in evaluating the developmental events in the fetal brain. Postmortem MRI examinations have also demonstrated comparable, and in certain cases, superior performance to traditional autopsy in revealing fetal brain abnormalities. In conclusion, ex vivo fetal brain MRI is an invaluable tool that provides unique insights into the early stages of brain development.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ex vivo magnetic resonance imaging of the human fetal brain.\",\"authors\":\"Ruike Chen, Chen Tian, Keqing Zhu, Guoliang Ren, Aimin Bao, Yi Shen, Xiao Li, Yaoyao Zhang, Wenying Qiu, Chao Ma, Jing Zhang, Dan Wu\",\"doi\":\"10.1159/000542276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The fetal brain undergoes a dynamic process of development during gestation, marked by well-orchestrated events such as neuronal proliferation, migration, axonal outgrowth, and dendritic arborization, mainly elucidated through histological studies. Ex vivo magnetic resonance imaging (MRI) has emerged as a useful tool for 3D visualization of the developing fetal brain, serving as a complementary tool to traditional histology.</p><p><strong>Summary: </strong>In this review, we summarized the commonly employed ex vivo MRI techniques and their advances in fetal brain imaging, as well as a standard protocol for postmortem fetal brain specimen collection and fixation. We then provided an overview of ex vivo MRI-based studies on the fetal brain.</p><p><strong>Key messages: </strong>According to our review, ex vivo T1- or T2-weighted structural MRI has contributed to the characterization of the anatomy of transient neuronal proliferative zones, the basal ganglia, and the cortex. Diffusion MRI related techniques, such as diffusion tensor imaging and tractography, have helped to investigate the microstructural patterns of fetal brain tissue, as well as the early emergence and development of neuronal migration pathways and white matter bundles. Ex vivo MRI findings have shown strong histological correlations, supporting the potential of MRI in evaluating the developmental events in the fetal brain. Postmortem MRI examinations have also demonstrated comparable, and in certain cases, superior performance to traditional autopsy in revealing fetal brain abnormalities. In conclusion, ex vivo fetal brain MRI is an invaluable tool that provides unique insights into the early stages of brain development.</p>\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000542276\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542276","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Ex vivo magnetic resonance imaging of the human fetal brain.
Background: The fetal brain undergoes a dynamic process of development during gestation, marked by well-orchestrated events such as neuronal proliferation, migration, axonal outgrowth, and dendritic arborization, mainly elucidated through histological studies. Ex vivo magnetic resonance imaging (MRI) has emerged as a useful tool for 3D visualization of the developing fetal brain, serving as a complementary tool to traditional histology.
Summary: In this review, we summarized the commonly employed ex vivo MRI techniques and their advances in fetal brain imaging, as well as a standard protocol for postmortem fetal brain specimen collection and fixation. We then provided an overview of ex vivo MRI-based studies on the fetal brain.
Key messages: According to our review, ex vivo T1- or T2-weighted structural MRI has contributed to the characterization of the anatomy of transient neuronal proliferative zones, the basal ganglia, and the cortex. Diffusion MRI related techniques, such as diffusion tensor imaging and tractography, have helped to investigate the microstructural patterns of fetal brain tissue, as well as the early emergence and development of neuronal migration pathways and white matter bundles. Ex vivo MRI findings have shown strong histological correlations, supporting the potential of MRI in evaluating the developmental events in the fetal brain. Postmortem MRI examinations have also demonstrated comparable, and in certain cases, superior performance to traditional autopsy in revealing fetal brain abnormalities. In conclusion, ex vivo fetal brain MRI is an invaluable tool that provides unique insights into the early stages of brain development.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.