冷冻保存过程中线粒体受损,造成 ROS 泄漏,导致氧化应激和公羊精子质量下降。

IF 1.6 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Liuming Zhang, Yuxuan Sun, Caiyu Jiang, Tariq Sohail, Xiaomei Sun, Jian Wang, Yongjun Li
{"title":"冷冻保存过程中线粒体受损,造成 ROS 泄漏,导致氧化应激和公羊精子质量下降。","authors":"Liuming Zhang, Yuxuan Sun, Caiyu Jiang, Tariq Sohail, Xiaomei Sun, Jian Wang, Yongjun Li","doi":"10.1111/rda.14737","DOIUrl":null,"url":null,"abstract":"<p><p>Semen cryopreservation can achieve long-term preservation of sperm. Ice crystal damage, as well as oxidative stress, result in mitochondrial dysfunction and a reduction in sperm motility after thawing. However, limited information exists regarding the impact of reactive oxygen species (ROS) and mitochondria on the cryopreservation of ram sperm. The primary objective of this study was to investigate the relationship between ROS and mitochondria concerning sperm quality during the cryopreservation of ram sperm. This investigation assessed sperm motility, kinematic characteristics, membrane integrity, acrosome integrity, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, expression of mitochondrial respiratory genes (NDUFV2, SDHA, CYC1, and COXIV), ROS levels, malondialdehyde (MDA) content, phosphatidylserine externalisation rate, sperm ultrastructure, mtDNA copy number, expression of apoptosis-related genes (Bax, Caspase-3, and Caspase-8), Cytochrome C, and Caspase-3 content. The results showed the cryopreservation significantly (p < 0.05) decreased motility, kinetic parameters, membrane integrity, acrosome integrity, MMP, ATP, mRNA expression levels of mitochondrial respiratory-related genes, and significantly (p < 0.05) increased ROS levels, MDA content, phosphatidylserine externalisation rate, damage of sperm ultrastructure, mtDNA copy number, mRNA expression levels of apoptosis-related genes, Cytochrome C and Caspase-3 content compared to the fresh semen group. In conclusion, the cryopreservation causes damage to mitochondria, leading to increased ROS and subsequent oxidative stress. This process also initiates mitochondrial dysfunction and interferes with the electron transport chain, ultimately resulting in decreased MMP and ATP production. Furthermore, the liberation of Cytochrome C prompted the increase in Caspase-3 expression and subsequent sperm apoptosis occurred, ultimately leading to a deterioration in sperm quality after thawing.</p>","PeriodicalId":21035,"journal":{"name":"Reproduction in Domestic Animals","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage to Mitochondria During the Cryopreservation, Causing ROS Leakage, Leading to Oxidative Stress and Decreased Quality of Ram Sperm.\",\"authors\":\"Liuming Zhang, Yuxuan Sun, Caiyu Jiang, Tariq Sohail, Xiaomei Sun, Jian Wang, Yongjun Li\",\"doi\":\"10.1111/rda.14737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Semen cryopreservation can achieve long-term preservation of sperm. Ice crystal damage, as well as oxidative stress, result in mitochondrial dysfunction and a reduction in sperm motility after thawing. However, limited information exists regarding the impact of reactive oxygen species (ROS) and mitochondria on the cryopreservation of ram sperm. The primary objective of this study was to investigate the relationship between ROS and mitochondria concerning sperm quality during the cryopreservation of ram sperm. This investigation assessed sperm motility, kinematic characteristics, membrane integrity, acrosome integrity, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, expression of mitochondrial respiratory genes (NDUFV2, SDHA, CYC1, and COXIV), ROS levels, malondialdehyde (MDA) content, phosphatidylserine externalisation rate, sperm ultrastructure, mtDNA copy number, expression of apoptosis-related genes (Bax, Caspase-3, and Caspase-8), Cytochrome C, and Caspase-3 content. The results showed the cryopreservation significantly (p < 0.05) decreased motility, kinetic parameters, membrane integrity, acrosome integrity, MMP, ATP, mRNA expression levels of mitochondrial respiratory-related genes, and significantly (p < 0.05) increased ROS levels, MDA content, phosphatidylserine externalisation rate, damage of sperm ultrastructure, mtDNA copy number, mRNA expression levels of apoptosis-related genes, Cytochrome C and Caspase-3 content compared to the fresh semen group. In conclusion, the cryopreservation causes damage to mitochondria, leading to increased ROS and subsequent oxidative stress. This process also initiates mitochondrial dysfunction and interferes with the electron transport chain, ultimately resulting in decreased MMP and ATP production. Furthermore, the liberation of Cytochrome C prompted the increase in Caspase-3 expression and subsequent sperm apoptosis occurred, ultimately leading to a deterioration in sperm quality after thawing.</p>\",\"PeriodicalId\":21035,\"journal\":{\"name\":\"Reproduction in Domestic Animals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction in Domestic Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/rda.14737\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction in Domestic Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/rda.14737","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

精液冷冻可实现精子的长期保存。解冻后,冰晶损伤和氧化应激会导致线粒体功能障碍和精子活力下降。然而,有关活性氧(ROS)和线粒体对冷冻保存公羊精子的影响的信息还很有限。本研究的主要目的是调查公羊精子冷冻保存过程中活性氧和线粒体与精子质量之间的关系。这项调查评估了精子的运动能力、运动特性、膜完整性、顶体完整性、线粒体膜电位(MMP)、三磷酸腺苷(ATP)水平、线粒体呼吸基因(NDUFV2、SDHA、CYC1和COXIV)的表达、ROS水平、丙二醛(MDA)含量、磷脂酰丝氨酸外化率、精子超微结构、mtDNA拷贝数、凋亡相关基因(Bax、Caspase-3和Caspase-8)的表达、细胞色素C和Caspase-3含量。结果表明,冷冻保存精子能显著(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damage to Mitochondria During the Cryopreservation, Causing ROS Leakage, Leading to Oxidative Stress and Decreased Quality of Ram Sperm.

Semen cryopreservation can achieve long-term preservation of sperm. Ice crystal damage, as well as oxidative stress, result in mitochondrial dysfunction and a reduction in sperm motility after thawing. However, limited information exists regarding the impact of reactive oxygen species (ROS) and mitochondria on the cryopreservation of ram sperm. The primary objective of this study was to investigate the relationship between ROS and mitochondria concerning sperm quality during the cryopreservation of ram sperm. This investigation assessed sperm motility, kinematic characteristics, membrane integrity, acrosome integrity, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, expression of mitochondrial respiratory genes (NDUFV2, SDHA, CYC1, and COXIV), ROS levels, malondialdehyde (MDA) content, phosphatidylserine externalisation rate, sperm ultrastructure, mtDNA copy number, expression of apoptosis-related genes (Bax, Caspase-3, and Caspase-8), Cytochrome C, and Caspase-3 content. The results showed the cryopreservation significantly (p < 0.05) decreased motility, kinetic parameters, membrane integrity, acrosome integrity, MMP, ATP, mRNA expression levels of mitochondrial respiratory-related genes, and significantly (p < 0.05) increased ROS levels, MDA content, phosphatidylserine externalisation rate, damage of sperm ultrastructure, mtDNA copy number, mRNA expression levels of apoptosis-related genes, Cytochrome C and Caspase-3 content compared to the fresh semen group. In conclusion, the cryopreservation causes damage to mitochondria, leading to increased ROS and subsequent oxidative stress. This process also initiates mitochondrial dysfunction and interferes with the electron transport chain, ultimately resulting in decreased MMP and ATP production. Furthermore, the liberation of Cytochrome C prompted the increase in Caspase-3 expression and subsequent sperm apoptosis occurred, ultimately leading to a deterioration in sperm quality after thawing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproduction in Domestic Animals
Reproduction in Domestic Animals 农林科学-奶制品与动物科学
CiteScore
3.00
自引率
5.90%
发文量
238
审稿时长
4-8 weeks
期刊介绍: The journal offers comprehensive information concerning physiology, pathology, and biotechnology of reproduction. Topical results are currently published in original papers, reviews, and short communications with particular attention to investigations on practicable techniques. Carefully selected reports, e. g. on embryo transfer and associated biotechnologies, gene transfer, and spermatology provide a link between basic research and clinical application. The journal applies to breeders, veterinarians, and biologists, and is also of interest in human medicine. Interdisciplinary cooperation is documented in the proceedings of the joint annual meetings. Fields of interest: Animal reproduction and biotechnology with special regard to investigations on applied and clinical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信