σI/抗σI因子中独特的Fn3类生物传感器,用于调控假杆菌(Pseudobacteroides cellulosolvens)中主要纤维素体支架蛋白的表达。

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2024-11-01 DOI:10.1002/pro.5193
Sheng Dong, Chao Chen, Jie Li, Ya-Jun Liu, Edward A Bayer, Raphael Lamed, Itzhak Mizrahi, Qiu Cui, Yingang Feng
{"title":"σI/抗σI因子中独特的Fn3类生物传感器,用于调控假杆菌(Pseudobacteroides cellulosolvens)中主要纤维素体支架蛋白的表达。","authors":"Sheng Dong, Chao Chen, Jie Li, Ya-Jun Liu, Edward A Bayer, Raphael Lamed, Itzhak Mizrahi, Qiu Cui, Yingang Feng","doi":"10.1002/pro.5193","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulolytic clostridia employ multiple pairs of alternative σ/anti-σ (SigI/RsgI) factors to regulate cellulosomal components for substrate-specific degradation of cellulosic biomass. The current model has proposed that RsgIs use a sensor domain to bind specific extracellular lignocellulosic components and activate cognate SigIs to initiate expression of corresponding cellulosomal enzyme genes, while expression of scaffoldins can be initiated by several different SigIs. Pseudobacteroides cellulosolvens contains the most complex known cellulosome system and the highest number of SigI-RsgI regulons yet discovered. However, the function of many RsgI sensor domains and their relationship with the various enzyme types are not fully understood. Here, we report that RsgI4 from P. cellulosolvens employs a C-terminal module that bears distant similarity to the fibronectin type III (Fn3) domain and serves as the sensor domain. Substrate-binding analysis revealed that the Fn3-like domain of RsgI4 represents a novel carbohydrate-binding module (CBM) that binds to a wide range of polysaccharide types. Structure determination further revealed that the Fn3-like domain belongs to the type B group of CBMs with a predicted concave face for substrate binding. Promoter sequence analysis of cellulosomal genes revealed that SigI4 is responsible for cellulosomal regulation of major scaffoldins rather than enzymes, consistent with the broad substrate specificity of the RsgI4 sensor domain. Notably, scaffoldins are invariably required as cellulosome components regardless of the substrate type. These findings suggest that the intricate cellulosome system of P. cellulosolvens comprises a more elaborate regulation mechanism than other bacteria and thus expands the paradigm of cellulosome regulation.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520246/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unique Fn3-like biosensor in σ<sup>I</sup>/anti-σ<sup>I</sup> factors for regulatory expression of major cellulosomal scaffoldins in Pseudobacteroides cellulosolvens.\",\"authors\":\"Sheng Dong, Chao Chen, Jie Li, Ya-Jun Liu, Edward A Bayer, Raphael Lamed, Itzhak Mizrahi, Qiu Cui, Yingang Feng\",\"doi\":\"10.1002/pro.5193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lignocellulolytic clostridia employ multiple pairs of alternative σ/anti-σ (SigI/RsgI) factors to regulate cellulosomal components for substrate-specific degradation of cellulosic biomass. The current model has proposed that RsgIs use a sensor domain to bind specific extracellular lignocellulosic components and activate cognate SigIs to initiate expression of corresponding cellulosomal enzyme genes, while expression of scaffoldins can be initiated by several different SigIs. Pseudobacteroides cellulosolvens contains the most complex known cellulosome system and the highest number of SigI-RsgI regulons yet discovered. However, the function of many RsgI sensor domains and their relationship with the various enzyme types are not fully understood. Here, we report that RsgI4 from P. cellulosolvens employs a C-terminal module that bears distant similarity to the fibronectin type III (Fn3) domain and serves as the sensor domain. Substrate-binding analysis revealed that the Fn3-like domain of RsgI4 represents a novel carbohydrate-binding module (CBM) that binds to a wide range of polysaccharide types. Structure determination further revealed that the Fn3-like domain belongs to the type B group of CBMs with a predicted concave face for substrate binding. Promoter sequence analysis of cellulosomal genes revealed that SigI4 is responsible for cellulosomal regulation of major scaffoldins rather than enzymes, consistent with the broad substrate specificity of the RsgI4 sensor domain. Notably, scaffoldins are invariably required as cellulosome components regardless of the substrate type. These findings suggest that the intricate cellulosome system of P. cellulosolvens comprises a more elaborate regulation mechanism than other bacteria and thus expands the paradigm of cellulosome regulation.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520246/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.5193\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5193","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

木质纤维素分解梭菌利用多对备选σ/反σ(SigI/RsgI)因子来调节纤维素体成分,以实现纤维素生物质的特定底物降解。目前的模型认为,RsgIs 利用传感器结构域结合特定的胞外木质纤维素成分,并激活同源的 SigIs,从而启动相应纤维素酶基因的表达,而支架素的表达可由多个不同的 SigIs 启动。纤维素溶文斯假杆菌(Pseudobacteroides cellulosolvens)含有已知最复杂的纤维素体系统,也是目前发现的SigI-RsgI调控子数量最多的假杆菌。然而,许多 RsgI 传感器结构域的功能及其与各种酶的关系尚未完全清楚。在这里,我们报告了来自 P. cellulosolvens 的 RsgI4 采用了一个与纤维粘连蛋白 III 型(Fn3)结构域非常相似的 C 端模块作为传感器结构域。底物结合分析表明,RsgI4 的类 Fn3 结构域代表了一种新型碳水化合物结合模块(CBM),可与多种多糖结合。结构测定进一步显示,Fn3 样结构域属于 CBM 的 B 型组,其预测凹面可用于底物结合。纤维素体基因的启动子序列分析表明,SigI4 负责主要支架素而不是酶的纤维素体调控,这与 RsgI4 传感器结构域的广泛底物特异性相一致。值得注意的是,无论底物类型如何,纤维素体都需要支架蛋白。这些发现表明,纤维素溶文斯菌错综复杂的纤维素体系统包含了比其他细菌更复杂的调控机制,从而拓展了纤维素体调控的范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique Fn3-like biosensor in σI/anti-σI factors for regulatory expression of major cellulosomal scaffoldins in Pseudobacteroides cellulosolvens.

Lignocellulolytic clostridia employ multiple pairs of alternative σ/anti-σ (SigI/RsgI) factors to regulate cellulosomal components for substrate-specific degradation of cellulosic biomass. The current model has proposed that RsgIs use a sensor domain to bind specific extracellular lignocellulosic components and activate cognate SigIs to initiate expression of corresponding cellulosomal enzyme genes, while expression of scaffoldins can be initiated by several different SigIs. Pseudobacteroides cellulosolvens contains the most complex known cellulosome system and the highest number of SigI-RsgI regulons yet discovered. However, the function of many RsgI sensor domains and their relationship with the various enzyme types are not fully understood. Here, we report that RsgI4 from P. cellulosolvens employs a C-terminal module that bears distant similarity to the fibronectin type III (Fn3) domain and serves as the sensor domain. Substrate-binding analysis revealed that the Fn3-like domain of RsgI4 represents a novel carbohydrate-binding module (CBM) that binds to a wide range of polysaccharide types. Structure determination further revealed that the Fn3-like domain belongs to the type B group of CBMs with a predicted concave face for substrate binding. Promoter sequence analysis of cellulosomal genes revealed that SigI4 is responsible for cellulosomal regulation of major scaffoldins rather than enzymes, consistent with the broad substrate specificity of the RsgI4 sensor domain. Notably, scaffoldins are invariably required as cellulosome components regardless of the substrate type. These findings suggest that the intricate cellulosome system of P. cellulosolvens comprises a more elaborate regulation mechanism than other bacteria and thus expands the paradigm of cellulosome regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信