Wyatt B Larrinaga, Jonathan J Jung, Chi-Yun Lin, Amie K Boal, Joseph A Cotruvo
{"title":"调节镧系元素伴侣蛋白的金属中心二聚化,以分离轻镧系元素。","authors":"Wyatt B Larrinaga, Jonathan J Jung, Chi-Yun Lin, Amie K Boal, Joseph A Cotruvo","doi":"10.1073/pnas.2410926121","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize <i>Methylobacterium</i> (<i>Methylorubrum</i>) <i>extorquens</i> LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, La<sup>III</sup>. However, the monomer prefers Nd<sup>III</sup> and Sm<sup>III</sup>, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for Pr<sup>III</sup> and Nd<sup>III</sup> by 100-fold. Selective dimerization enriches high-value Pr<sup>III</sup> and Nd<sup>III</sup> relative to low-value La<sup>III</sup> and Ce<sup>III</sup> in an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD's preference for Nd<sup>III</sup> and Sm<sup>III</sup>. Our results suggest that LanD's unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 45","pages":"e2410926121"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551332/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modulating metal-centered dimerization of a lanthanide chaperone protein for separation of light lanthanides.\",\"authors\":\"Wyatt B Larrinaga, Jonathan J Jung, Chi-Yun Lin, Amie K Boal, Joseph A Cotruvo\",\"doi\":\"10.1073/pnas.2410926121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize <i>Methylobacterium</i> (<i>Methylorubrum</i>) <i>extorquens</i> LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, La<sup>III</sup>. However, the monomer prefers Nd<sup>III</sup> and Sm<sup>III</sup>, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for Pr<sup>III</sup> and Nd<sup>III</sup> by 100-fold. Selective dimerization enriches high-value Pr<sup>III</sup> and Nd<sup>III</sup> relative to low-value La<sup>III</sup> and Ce<sup>III</sup> in an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD's preference for Nd<sup>III</sup> and Sm<sup>III</sup>. Our results suggest that LanD's unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"121 45\",\"pages\":\"e2410926121\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551332/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2410926121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2410926121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Modulating metal-centered dimerization of a lanthanide chaperone protein for separation of light lanthanides.
Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize Methylobacterium (Methylorubrum) extorquens LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, LaIII. However, the monomer prefers NdIII and SmIII, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for PrIII and NdIII by 100-fold. Selective dimerization enriches high-value PrIII and NdIII relative to low-value LaIII and CeIII in an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD's preference for NdIII and SmIII. Our results suggest that LanD's unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.