{"title":"R2R3-MYB抑制因子BrMYB32调控大白菜花青素的生物合成。","authors":"Sun-Hyung Lim, Da-Hye Kim, Jong-Yeol Lee","doi":"10.1111/ppl.14591","DOIUrl":null,"url":null,"abstract":"<p><p>Anthocyanin-enriched Chinese cabbage has health-enhancing antioxidant properties. Although various regulators of anthocyanin biosynthesis have been identified, the role of individual repressors in this process remains underexplored. This study identifies and characterizes the R2R3-MYB BrMYB32 in Chinese cabbage (Brassica rapa), which acts as a repressor in anthocyanin biosynthesis. BrMYB32 expression is significantly upregulated under anthocyanin inductive conditions, such as sucrose and high light treatment. Transgenic tobacco plants overexpressing BrMYB32 show decreased anthocyanin levels and downregulation of anthocyanin biosynthesis genes in flowers, highlighting BrMYB32's repressive role. Located in the nucleus, BrMYB32 interacts with the TRANSPARENT TESTA 8 (BrTT8), a basic helix-loop-helix protein, but no interaction was detected with the R2R3-MYB protein PRODUCTION OF ANTHOCYANIN PIGMENT 1 (BrPAP1). Functional assays in Chinese cabbage cotyledons and tobacco leaves demonstrate that BrMYB32 represses the transcript level of anthocyanin biosynthesis genes, thereby inhibiting pigment accumulation. Promoter activation assays further reveal that BrMYB32 inhibits the transactivation of CHALCONE SYNTHASE and DIHYDROFLAVONOL REDUCTASE through the C1 and C2 motifs. Notably, BrMYB32 expression is induced by BrPAP1, either alone or in co-expression with BrTT8, and subsequently regulates the expression of these activators. It verifies that BrMYB32 not only interferes with the formation of an active MYB-bHLH-WD40 complex but also downregulates the transcript levels of anthocyanin biosynthesis genes, thereby fine-tuning anthocyanin biosynthesis. Our findings suggest a model in which anthocyanin biosynthesis in Chinese cabbage is precisely regulated by the interplay between activators and repressors.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14591"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"R2R3-MYB repressor, BrMYB32, regulates anthocyanin biosynthesis in Chinese cabbage.\",\"authors\":\"Sun-Hyung Lim, Da-Hye Kim, Jong-Yeol Lee\",\"doi\":\"10.1111/ppl.14591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anthocyanin-enriched Chinese cabbage has health-enhancing antioxidant properties. Although various regulators of anthocyanin biosynthesis have been identified, the role of individual repressors in this process remains underexplored. This study identifies and characterizes the R2R3-MYB BrMYB32 in Chinese cabbage (Brassica rapa), which acts as a repressor in anthocyanin biosynthesis. BrMYB32 expression is significantly upregulated under anthocyanin inductive conditions, such as sucrose and high light treatment. Transgenic tobacco plants overexpressing BrMYB32 show decreased anthocyanin levels and downregulation of anthocyanin biosynthesis genes in flowers, highlighting BrMYB32's repressive role. Located in the nucleus, BrMYB32 interacts with the TRANSPARENT TESTA 8 (BrTT8), a basic helix-loop-helix protein, but no interaction was detected with the R2R3-MYB protein PRODUCTION OF ANTHOCYANIN PIGMENT 1 (BrPAP1). Functional assays in Chinese cabbage cotyledons and tobacco leaves demonstrate that BrMYB32 represses the transcript level of anthocyanin biosynthesis genes, thereby inhibiting pigment accumulation. Promoter activation assays further reveal that BrMYB32 inhibits the transactivation of CHALCONE SYNTHASE and DIHYDROFLAVONOL REDUCTASE through the C1 and C2 motifs. Notably, BrMYB32 expression is induced by BrPAP1, either alone or in co-expression with BrTT8, and subsequently regulates the expression of these activators. It verifies that BrMYB32 not only interferes with the formation of an active MYB-bHLH-WD40 complex but also downregulates the transcript levels of anthocyanin biosynthesis genes, thereby fine-tuning anthocyanin biosynthesis. Our findings suggest a model in which anthocyanin biosynthesis in Chinese cabbage is precisely regulated by the interplay between activators and repressors.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"176 6\",\"pages\":\"e14591\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14591\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14591","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
R2R3-MYB repressor, BrMYB32, regulates anthocyanin biosynthesis in Chinese cabbage.
Anthocyanin-enriched Chinese cabbage has health-enhancing antioxidant properties. Although various regulators of anthocyanin biosynthesis have been identified, the role of individual repressors in this process remains underexplored. This study identifies and characterizes the R2R3-MYB BrMYB32 in Chinese cabbage (Brassica rapa), which acts as a repressor in anthocyanin biosynthesis. BrMYB32 expression is significantly upregulated under anthocyanin inductive conditions, such as sucrose and high light treatment. Transgenic tobacco plants overexpressing BrMYB32 show decreased anthocyanin levels and downregulation of anthocyanin biosynthesis genes in flowers, highlighting BrMYB32's repressive role. Located in the nucleus, BrMYB32 interacts with the TRANSPARENT TESTA 8 (BrTT8), a basic helix-loop-helix protein, but no interaction was detected with the R2R3-MYB protein PRODUCTION OF ANTHOCYANIN PIGMENT 1 (BrPAP1). Functional assays in Chinese cabbage cotyledons and tobacco leaves demonstrate that BrMYB32 represses the transcript level of anthocyanin biosynthesis genes, thereby inhibiting pigment accumulation. Promoter activation assays further reveal that BrMYB32 inhibits the transactivation of CHALCONE SYNTHASE and DIHYDROFLAVONOL REDUCTASE through the C1 and C2 motifs. Notably, BrMYB32 expression is induced by BrPAP1, either alone or in co-expression with BrTT8, and subsequently regulates the expression of these activators. It verifies that BrMYB32 not only interferes with the formation of an active MYB-bHLH-WD40 complex but also downregulates the transcript levels of anthocyanin biosynthesis genes, thereby fine-tuning anthocyanin biosynthesis. Our findings suggest a model in which anthocyanin biosynthesis in Chinese cabbage is precisely regulated by the interplay between activators and repressors.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.