Liqun Ma, Jing Li, Jingying He, Tiantian Jiang, Yan Hao, Yanzhen Bu
{"title":"Cylicostephanus longibursatus 线粒体基因组的特征和系统发育分析。","authors":"Liqun Ma, Jing Li, Jingying He, Tiantian Jiang, Yan Hao, Yanzhen Bu","doi":"10.1007/s00436-024-08385-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cylicostephanus longibursatus is a common parasite in equine animals. Hosts infected by these nematodes might face disease or death. This study utilized next-generation sequencing technology to sequence the complete mitochondrial genome (mt genome) of C. longibursatus. Through bioinformatics techniques, the genomic base composition, codon usage, tRNA secondary structures, evolutionary relationships, and taxonomic status were analyzed. The results revealed that the mitochondrial genome of C. longibursatus is a double-stranded, 13,807-bp closed circular molecule with an AT content of 76.0%, indicating a clear preference for AT bases. The mitochondrial genome consisted of a total of 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. Among the 12 protein-coding genes, TTG and ATT were the common start codons. TAA was the predominant termination codon, except for the ND3 and ND6 coding genes, and the COШ genes used TAG and \"T\" as termination codons, respectively. All tRNAs exhibited atypical clover-leaf secondary structures, except for tRNA<sup>Lys</sup> and tRNA<sup>Leu2</sup>, where two tRNA<sup>Ser</sup> genes lacked DHU arms and DHU loops, tRNA<sup>met</sup> lacked the TΨC-arm, tRNA<sup>Ile</sup> lacked the TΨC-loop, and the remaining 16 tRNAs lacked the TΨC-arm and TΨC loop, which were substituted by the \"TV-replacement loop\". Phylogenetic analyses, based on the 12 protein-coding genes and utilizing maximum likelihood (ML) and Bayesian inference (BI) analyses, indicated that C. longibursatus did not form a monophyletic group with other Cylicostephanus but was instead more closely related to Cyathostomum. These research findings provide fundamental data for exploring the population classification and phylogeny of strongylid nematodes.</p>","PeriodicalId":19968,"journal":{"name":"Parasitology Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and phylogenetic analysis of the mitochondrial genome of Cylicostephanus longibursatus.\",\"authors\":\"Liqun Ma, Jing Li, Jingying He, Tiantian Jiang, Yan Hao, Yanzhen Bu\",\"doi\":\"10.1007/s00436-024-08385-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cylicostephanus longibursatus is a common parasite in equine animals. Hosts infected by these nematodes might face disease or death. This study utilized next-generation sequencing technology to sequence the complete mitochondrial genome (mt genome) of C. longibursatus. Through bioinformatics techniques, the genomic base composition, codon usage, tRNA secondary structures, evolutionary relationships, and taxonomic status were analyzed. The results revealed that the mitochondrial genome of C. longibursatus is a double-stranded, 13,807-bp closed circular molecule with an AT content of 76.0%, indicating a clear preference for AT bases. The mitochondrial genome consisted of a total of 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. Among the 12 protein-coding genes, TTG and ATT were the common start codons. TAA was the predominant termination codon, except for the ND3 and ND6 coding genes, and the COШ genes used TAG and \\\"T\\\" as termination codons, respectively. All tRNAs exhibited atypical clover-leaf secondary structures, except for tRNA<sup>Lys</sup> and tRNA<sup>Leu2</sup>, where two tRNA<sup>Ser</sup> genes lacked DHU arms and DHU loops, tRNA<sup>met</sup> lacked the TΨC-arm, tRNA<sup>Ile</sup> lacked the TΨC-loop, and the remaining 16 tRNAs lacked the TΨC-arm and TΨC loop, which were substituted by the \\\"TV-replacement loop\\\". Phylogenetic analyses, based on the 12 protein-coding genes and utilizing maximum likelihood (ML) and Bayesian inference (BI) analyses, indicated that C. longibursatus did not form a monophyletic group with other Cylicostephanus but was instead more closely related to Cyathostomum. These research findings provide fundamental data for exploring the population classification and phylogeny of strongylid nematodes.</p>\",\"PeriodicalId\":19968,\"journal\":{\"name\":\"Parasitology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasitology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00436-024-08385-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00436-024-08385-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Characterization and phylogenetic analysis of the mitochondrial genome of Cylicostephanus longibursatus.
Cylicostephanus longibursatus is a common parasite in equine animals. Hosts infected by these nematodes might face disease or death. This study utilized next-generation sequencing technology to sequence the complete mitochondrial genome (mt genome) of C. longibursatus. Through bioinformatics techniques, the genomic base composition, codon usage, tRNA secondary structures, evolutionary relationships, and taxonomic status were analyzed. The results revealed that the mitochondrial genome of C. longibursatus is a double-stranded, 13,807-bp closed circular molecule with an AT content of 76.0%, indicating a clear preference for AT bases. The mitochondrial genome consisted of a total of 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. Among the 12 protein-coding genes, TTG and ATT were the common start codons. TAA was the predominant termination codon, except for the ND3 and ND6 coding genes, and the COШ genes used TAG and "T" as termination codons, respectively. All tRNAs exhibited atypical clover-leaf secondary structures, except for tRNALys and tRNALeu2, where two tRNASer genes lacked DHU arms and DHU loops, tRNAmet lacked the TΨC-arm, tRNAIle lacked the TΨC-loop, and the remaining 16 tRNAs lacked the TΨC-arm and TΨC loop, which were substituted by the "TV-replacement loop". Phylogenetic analyses, based on the 12 protein-coding genes and utilizing maximum likelihood (ML) and Bayesian inference (BI) analyses, indicated that C. longibursatus did not form a monophyletic group with other Cylicostephanus but was instead more closely related to Cyathostomum. These research findings provide fundamental data for exploring the population classification and phylogeny of strongylid nematodes.
期刊介绍:
The journal Parasitology Research covers the latest developments in parasitology across a variety of disciplines, including biology, medicine and veterinary medicine. Among many topics discussed are chemotherapy and control of parasitic disease, and the relationship of host and parasite.
Other coverage includes: Protozoology, Helminthology, Entomology; Morphology (incl. Pathomorphology, Ultrastructure); Biochemistry, Physiology including Pathophysiology;
Parasite-Host-Relationships including Immunology and Host Specificity; life history, ecology and epidemiology; and Diagnosis, Chemotherapy and Control of Parasitic Diseases.