{"title":"基于锗的无结纳米线晶体管在可见光到近红外光谱范围内的可调光反应。","authors":"Vikash Sharma, Nitish Kumar, Sumit Sharma, Pushpapraj Singh, Ankur Gupta, Samaresh Das","doi":"10.1088/1361-6528/ad8bce","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the phototransistor behavior is investigated in the germanium-on-insulator (GeOI)-based junctionless nanowire (JL-NW) transistor under various light conditions. High responsivity and photosensitivity are attributed in the fully depleted regime within the visible and near-infrared bands. The impact of light is also investigated in detail on the electronic and transfer characteristics such as energy bandgap, carrier distribution, electrostatic potential, electric field, generation and recombination rates. Further, the channel doping and thickness are tuned to optimize the optical responsivity. The significant tunability of responsivity is observed with increasing channel thickness. The device exhibits fast optical switching performance, which is further enhanced at higher input light power. Overall, at the nanoscale dimension, our proposed phototransistor demonstrates better detectivity with a significantly smaller illumination area. Thus, the GeOI-based JL-NW phototransistors can be used for imaging (visible wavelength range) and bioimaging (near-infrared wavelength range) applications in advanced technology nodes.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable photo-response in the visible to NIR spectrum range of Germanium-based junctionless nanowire transistor.\",\"authors\":\"Vikash Sharma, Nitish Kumar, Sumit Sharma, Pushpapraj Singh, Ankur Gupta, Samaresh Das\",\"doi\":\"10.1088/1361-6528/ad8bce\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, the phototransistor behavior is investigated in the germanium-on-insulator (GeOI)-based junctionless nanowire (JL-NW) transistor under various light conditions. High responsivity and photosensitivity are attributed in the fully depleted regime within the visible and near-infrared bands. The impact of light is also investigated in detail on the electronic and transfer characteristics such as energy bandgap, carrier distribution, electrostatic potential, electric field, generation and recombination rates. Further, the channel doping and thickness are tuned to optimize the optical responsivity. The significant tunability of responsivity is observed with increasing channel thickness. The device exhibits fast optical switching performance, which is further enhanced at higher input light power. Overall, at the nanoscale dimension, our proposed phototransistor demonstrates better detectivity with a significantly smaller illumination area. Thus, the GeOI-based JL-NW phototransistors can be used for imaging (visible wavelength range) and bioimaging (near-infrared wavelength range) applications in advanced technology nodes.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad8bce\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8bce","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tunable photo-response in the visible to NIR spectrum range of Germanium-based junctionless nanowire transistor.
In this paper, the phototransistor behavior is investigated in the germanium-on-insulator (GeOI)-based junctionless nanowire (JL-NW) transistor under various light conditions. High responsivity and photosensitivity are attributed in the fully depleted regime within the visible and near-infrared bands. The impact of light is also investigated in detail on the electronic and transfer characteristics such as energy bandgap, carrier distribution, electrostatic potential, electric field, generation and recombination rates. Further, the channel doping and thickness are tuned to optimize the optical responsivity. The significant tunability of responsivity is observed with increasing channel thickness. The device exhibits fast optical switching performance, which is further enhanced at higher input light power. Overall, at the nanoscale dimension, our proposed phototransistor demonstrates better detectivity with a significantly smaller illumination area. Thus, the GeOI-based JL-NW phototransistors can be used for imaging (visible wavelength range) and bioimaging (near-infrared wavelength range) applications in advanced technology nodes.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.