昼夜节律紊乱通过 NR1D1/NF-κB 轴调节肠神经前体细胞分化,导致胃肠道运动功能障碍。

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yurui Zhang, Shizhao Xu, Mengke Fan, Hailing Yao, Chen Jiang, Qi He, Huiying Shi, Rong Lin
{"title":"昼夜节律紊乱通过 NR1D1/NF-κB 轴调节肠神经前体细胞分化,导致胃肠道运动功能障碍。","authors":"Yurui Zhang, Shizhao Xu, Mengke Fan, Hailing Yao, Chen Jiang, Qi He, Huiying Shi, Rong Lin","doi":"10.1186/s12967-024-05766-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Circadian rhythm disruption (CRD) is implicated with numerous gastrointestinal motility diseases, with the enteric nervous system (ENS) taking main responsibility for the coordination of gastrointestinal motility. The purpose of this study is to explore the role of circadian rhythms in ENS remodeling and to further elucidate the underlying mechanisms.</p><p><strong>Methods: </strong>First, we established a jet-lagged mice model by advancing the light/dark phase shift by six hours every three days for eight weeks. Subsequent changes in gastrointestinal motility and the ENS were then assessed. Additionally, a triple-transgenic mouse strain (Nestin-creER<sup>T2</sup> × Ngfr-DreER<sup>T2</sup>: DTRGFP) was utilized to track the effects of CRD on the differentiation of enteric neural precursor cells (ENPCs). RNA sequencing was also performed to elucidate the underlying mechanism.</p><p><strong>Results: </strong>Compared to the control group, CRD significantly accelerated gastrointestinal motility, evidenced by faster intestinal peristalsis (P < 0.01), increased fecal output (P < 0.01), and elevated fecal water content (P < 0.05), as well as enhanced electrical field stimulation induced contractions (P < 0.05). These effects were associated with an increase in the number of glial cells and nitrergic neurons in the colonic myenteric plexus. Additionally, ENPCs in the colon showed a heightened differentiation into glial cells and nitrergic neurons. Notably, the NR1D1/nuclear factor-kappaB (NF-κB) axis played a crucial role in the CRD-mediated changes in ENPCs differentiation. Supplementation with NR1D1 agonist or NF-κB antagonist was able to restore gastrointestinal motility and normalize the ENS in jet-lagged mice.</p><p><strong>Conclusions: </strong>CRD regulates the differentiation of ENPCs through the NR1D1/NF-κB axis, resulting in dysfunction of the ENS and impaired gastrointestinal motility in mice.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520590/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circadian rhythm disruption modulates enteric neural precursor cells differentiation leading to gastrointestinal motility dysfunction via the NR1D1/NF-κB axis.\",\"authors\":\"Yurui Zhang, Shizhao Xu, Mengke Fan, Hailing Yao, Chen Jiang, Qi He, Huiying Shi, Rong Lin\",\"doi\":\"10.1186/s12967-024-05766-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Circadian rhythm disruption (CRD) is implicated with numerous gastrointestinal motility diseases, with the enteric nervous system (ENS) taking main responsibility for the coordination of gastrointestinal motility. The purpose of this study is to explore the role of circadian rhythms in ENS remodeling and to further elucidate the underlying mechanisms.</p><p><strong>Methods: </strong>First, we established a jet-lagged mice model by advancing the light/dark phase shift by six hours every three days for eight weeks. Subsequent changes in gastrointestinal motility and the ENS were then assessed. Additionally, a triple-transgenic mouse strain (Nestin-creER<sup>T2</sup> × Ngfr-DreER<sup>T2</sup>: DTRGFP) was utilized to track the effects of CRD on the differentiation of enteric neural precursor cells (ENPCs). RNA sequencing was also performed to elucidate the underlying mechanism.</p><p><strong>Results: </strong>Compared to the control group, CRD significantly accelerated gastrointestinal motility, evidenced by faster intestinal peristalsis (P < 0.01), increased fecal output (P < 0.01), and elevated fecal water content (P < 0.05), as well as enhanced electrical field stimulation induced contractions (P < 0.05). These effects were associated with an increase in the number of glial cells and nitrergic neurons in the colonic myenteric plexus. Additionally, ENPCs in the colon showed a heightened differentiation into glial cells and nitrergic neurons. Notably, the NR1D1/nuclear factor-kappaB (NF-κB) axis played a crucial role in the CRD-mediated changes in ENPCs differentiation. Supplementation with NR1D1 agonist or NF-κB antagonist was able to restore gastrointestinal motility and normalize the ENS in jet-lagged mice.</p><p><strong>Conclusions: </strong>CRD regulates the differentiation of ENPCs through the NR1D1/NF-κB axis, resulting in dysfunction of the ENS and impaired gastrointestinal motility in mice.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520590/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12967-024-05766-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-024-05766-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:昼夜节律紊乱(CRD)与多种胃肠道运动疾病有关,而肠道神经系统(ENS)是协调胃肠道运动的主要器官。本研究旨在探讨昼夜节律在 ENS 重塑中的作用,并进一步阐明其潜在机制:首先,我们建立了一个时差小鼠模型,每三天将光暗相位差提前六小时,持续八周。方法:首先,我们建立了一个时差模型,每三天将光照/黑暗相位转换提前六小时,持续八周,然后评估胃肠道运动和耳鼻咽喉神经系统的后续变化。此外,还利用三重转基因小鼠品系(Nestin-creERT2 × Ngfr-DreERT2:DTRGFP)跟踪 CRD 对肠道神经前体细胞(ENPCs)分化的影响。此外,还进行了 RNA 测序以阐明其潜在机制:结果:与对照组相比,CRD能明显加快胃肠道蠕动,表现为肠蠕动加快(P 结论:CRD能调节肠神经前体细胞(ENPCs)的分化:CRD通过NR1D1/NF-κB轴调节ENPCs的分化,导致小鼠ENS功能障碍和胃肠道运动功能受损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circadian rhythm disruption modulates enteric neural precursor cells differentiation leading to gastrointestinal motility dysfunction via the NR1D1/NF-κB axis.

Objectives: Circadian rhythm disruption (CRD) is implicated with numerous gastrointestinal motility diseases, with the enteric nervous system (ENS) taking main responsibility for the coordination of gastrointestinal motility. The purpose of this study is to explore the role of circadian rhythms in ENS remodeling and to further elucidate the underlying mechanisms.

Methods: First, we established a jet-lagged mice model by advancing the light/dark phase shift by six hours every three days for eight weeks. Subsequent changes in gastrointestinal motility and the ENS were then assessed. Additionally, a triple-transgenic mouse strain (Nestin-creERT2 × Ngfr-DreERT2: DTRGFP) was utilized to track the effects of CRD on the differentiation of enteric neural precursor cells (ENPCs). RNA sequencing was also performed to elucidate the underlying mechanism.

Results: Compared to the control group, CRD significantly accelerated gastrointestinal motility, evidenced by faster intestinal peristalsis (P < 0.01), increased fecal output (P < 0.01), and elevated fecal water content (P < 0.05), as well as enhanced electrical field stimulation induced contractions (P < 0.05). These effects were associated with an increase in the number of glial cells and nitrergic neurons in the colonic myenteric plexus. Additionally, ENPCs in the colon showed a heightened differentiation into glial cells and nitrergic neurons. Notably, the NR1D1/nuclear factor-kappaB (NF-κB) axis played a crucial role in the CRD-mediated changes in ENPCs differentiation. Supplementation with NR1D1 agonist or NF-κB antagonist was able to restore gastrointestinal motility and normalize the ENS in jet-lagged mice.

Conclusions: CRD regulates the differentiation of ENPCs through the NR1D1/NF-κB axis, resulting in dysfunction of the ENS and impaired gastrointestinal motility in mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信