{"title":"大肠癌的创新细菌疗法和基因工程方法:新策略和临床意义综述》。","authors":"Chunxiao Song, Chunwu Zhao","doi":"10.4014/jmb.2408.08026","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is considered a widespread cancer, ranking second in mortality and incidence among cancer patients worldwide. CRC develops from adenoma to carcinoma through the dynamic interplay of genetic and environmental factors. The conventional modes of treatment, including operation, chemotherapy, and irradiation, are associated with significant challenges, such as drug resistance and toxicity, necessitating the exploration of new treatment modalities. These difficulties reveal the necessity of the emergence of new therapeutic approaches. This review mainly emphasizes the bacterial-based therapies that have recently developed like the engineered bacteriophage therapy and bacterial immunotherapy that pale the existing chemotherapy in terms of toxicity but are effective in killing tumor cells. Also, it also investigates various molecular genetic engineering strategies such as CRISPR-Cas9, CRISPR prime editing and gene silencing to achieve better targeting of CRC. Implementing these new approaches into the forefront of CRC treatment may bring better, more effective therapy with fewer side effects on patients' quality of life.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Bacterial Therapies and Genetic Engineering Approaches in Colorectal Cancer: A Review of Emerging Strategies and Clinical Implications.\",\"authors\":\"Chunxiao Song, Chunwu Zhao\",\"doi\":\"10.4014/jmb.2408.08026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is considered a widespread cancer, ranking second in mortality and incidence among cancer patients worldwide. CRC develops from adenoma to carcinoma through the dynamic interplay of genetic and environmental factors. The conventional modes of treatment, including operation, chemotherapy, and irradiation, are associated with significant challenges, such as drug resistance and toxicity, necessitating the exploration of new treatment modalities. These difficulties reveal the necessity of the emergence of new therapeutic approaches. This review mainly emphasizes the bacterial-based therapies that have recently developed like the engineered bacteriophage therapy and bacterial immunotherapy that pale the existing chemotherapy in terms of toxicity but are effective in killing tumor cells. Also, it also investigates various molecular genetic engineering strategies such as CRISPR-Cas9, CRISPR prime editing and gene silencing to achieve better targeting of CRC. Implementing these new approaches into the forefront of CRC treatment may bring better, more effective therapy with fewer side effects on patients' quality of life.</p>\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2408.08026\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2408.08026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Innovative Bacterial Therapies and Genetic Engineering Approaches in Colorectal Cancer: A Review of Emerging Strategies and Clinical Implications.
Colorectal cancer (CRC) is considered a widespread cancer, ranking second in mortality and incidence among cancer patients worldwide. CRC develops from adenoma to carcinoma through the dynamic interplay of genetic and environmental factors. The conventional modes of treatment, including operation, chemotherapy, and irradiation, are associated with significant challenges, such as drug resistance and toxicity, necessitating the exploration of new treatment modalities. These difficulties reveal the necessity of the emergence of new therapeutic approaches. This review mainly emphasizes the bacterial-based therapies that have recently developed like the engineered bacteriophage therapy and bacterial immunotherapy that pale the existing chemotherapy in terms of toxicity but are effective in killing tumor cells. Also, it also investigates various molecular genetic engineering strategies such as CRISPR-Cas9, CRISPR prime editing and gene silencing to achieve better targeting of CRC. Implementing these new approaches into the forefront of CRC treatment may bring better, more effective therapy with fewer side effects on patients' quality of life.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.