IMPA1衍生肌醇通过激活IMPDH2维持耐受性前列腺癌的干性。

IF 12.6 1区 医学 Q1 IMMUNOLOGY
Journal of Experimental Medicine Pub Date : 2024-11-04 Epub Date: 2024-10-29 DOI:10.1084/jem.20231832
Che-Chia Hsu, Guihua Wang, Chien-Feng Li, Xian Zhang, Zhen Cai, Tingjin Chen, Bo-Syong Pan, Rajesh Kumar Manne, Gagan Deep, Haiwei Gu, Yuzhuo Wang, Danni Peng, Vasudevarao Penugurti, Xiaobo Zhou, Zhigang Xu, Zhongzhu Chen, Ming Chen, Andrew J Armstrong, Jiaoti Huang, Hong-Yu Li, Hui-Kuan Lin
{"title":"IMPA1衍生肌醇通过激活IMPDH2维持耐受性前列腺癌的干性。","authors":"Che-Chia Hsu, Guihua Wang, Chien-Feng Li, Xian Zhang, Zhen Cai, Tingjin Chen, Bo-Syong Pan, Rajesh Kumar Manne, Gagan Deep, Haiwei Gu, Yuzhuo Wang, Danni Peng, Vasudevarao Penugurti, Xiaobo Zhou, Zhigang Xu, Zhongzhu Chen, Ming Chen, Andrew J Armstrong, Jiaoti Huang, Hong-Yu Li, Hui-Kuan Lin","doi":"10.1084/jem.20231832","DOIUrl":null,"url":null,"abstract":"<p><p>Acquisition of prostate cancer stem cells (PCSCs) manifested during androgen ablation therapy (ABT) contributes to castration-resistant prostate cancer (CRPC). However, little is known about the specific metabolites critically orchestrating this process. Here, we show that IMPA1-derived inositol enriched in PCSCs is a key metabolite crucially maintaining PCSCs for CRPC progression and ABT resistance. Notably, conditional Impa1 knockout in the prostate abrogates the pool and properties of PCSCs to orchestrate CRPC progression and prolong the survival of TRAMP mice. IMPA1-derived inositol serves as a cofactor that directly binds to and activates IMPDH2, which synthesizes guanylate nucleotides for maintaining PCSCs with ARlow/- features leading to CRPC progression and ABT resistance. IMPA1/inositol/IMPDH2 axis is upregulated in human prostate cancer, and its overexpression predicts poor survival outcomes. Genetically and pharmacologically targeting the IMPA1/inositol/IMPDH2 axis abrogates CRPC and overcomes ABT resistance in various CRPC xenografts, patient-derived xenograft (PDX) tumor models, and TRAMP mouse models. Our study identifies IMPDH2 as an inositol sensor whose activation by inositol represents a key mechanism for maintaining PCSCs for CRPC and ABT resistance.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 11","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528126/pdf/","citationCount":"0","resultStr":"{\"title\":\"IMPA1-derived inositol maintains stemness in castration-resistant prostate cancer via IMPDH2 activation.\",\"authors\":\"Che-Chia Hsu, Guihua Wang, Chien-Feng Li, Xian Zhang, Zhen Cai, Tingjin Chen, Bo-Syong Pan, Rajesh Kumar Manne, Gagan Deep, Haiwei Gu, Yuzhuo Wang, Danni Peng, Vasudevarao Penugurti, Xiaobo Zhou, Zhigang Xu, Zhongzhu Chen, Ming Chen, Andrew J Armstrong, Jiaoti Huang, Hong-Yu Li, Hui-Kuan Lin\",\"doi\":\"10.1084/jem.20231832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acquisition of prostate cancer stem cells (PCSCs) manifested during androgen ablation therapy (ABT) contributes to castration-resistant prostate cancer (CRPC). However, little is known about the specific metabolites critically orchestrating this process. Here, we show that IMPA1-derived inositol enriched in PCSCs is a key metabolite crucially maintaining PCSCs for CRPC progression and ABT resistance. Notably, conditional Impa1 knockout in the prostate abrogates the pool and properties of PCSCs to orchestrate CRPC progression and prolong the survival of TRAMP mice. IMPA1-derived inositol serves as a cofactor that directly binds to and activates IMPDH2, which synthesizes guanylate nucleotides for maintaining PCSCs with ARlow/- features leading to CRPC progression and ABT resistance. IMPA1/inositol/IMPDH2 axis is upregulated in human prostate cancer, and its overexpression predicts poor survival outcomes. Genetically and pharmacologically targeting the IMPA1/inositol/IMPDH2 axis abrogates CRPC and overcomes ABT resistance in various CRPC xenografts, patient-derived xenograft (PDX) tumor models, and TRAMP mouse models. Our study identifies IMPDH2 as an inositol sensor whose activation by inositol represents a key mechanism for maintaining PCSCs for CRPC and ABT resistance.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"221 11\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20231832\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20231832","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

雄激素消融治疗(ABT)期间前列腺癌干细胞(PCSCs)的获得是导致阉割耐药前列腺癌(CRPC)的原因之一。然而,人们对协调这一过程的特定代谢物知之甚少。在这里,我们发现 PCSCs 中富含的 IMPA1 衍生肌醇是一种关键的代谢物,对维持 PCSCs 的 CRPC 进展和 ABT 抗性至关重要。值得注意的是,有条件地敲除前列腺中的IMPA1会削弱PCSCs的数量和特性,使其无法协调CRPC的进展并延长TRAMP小鼠的存活时间。IMPA1衍生的肌醇是一种辅助因子,可直接与IMPDH2结合并激活IMPDH2,后者可合成鸟苷酸核苷酸,以维持具有ARlow/-特征的PCSCs,从而导致CRPC进展和ABT耐药。IMPA1/肌醇/IMPDH2轴在人类前列腺癌中上调,其过度表达预示着不良的生存结果。通过基因和药物靶向 IMPA1/肌醇/IMPDH2轴,可在各种CRPC异种移植、患者衍生异种移植(PDX)肿瘤模型和TRAMP小鼠模型中消减CRPC并克服ABT耐药性。我们的研究发现,IMPDH2是一种肌醇传感器,肌醇对它的激活是维持PCSCs对CRPC和ABT耐药的关键机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPA1-derived inositol maintains stemness in castration-resistant prostate cancer via IMPDH2 activation.

Acquisition of prostate cancer stem cells (PCSCs) manifested during androgen ablation therapy (ABT) contributes to castration-resistant prostate cancer (CRPC). However, little is known about the specific metabolites critically orchestrating this process. Here, we show that IMPA1-derived inositol enriched in PCSCs is a key metabolite crucially maintaining PCSCs for CRPC progression and ABT resistance. Notably, conditional Impa1 knockout in the prostate abrogates the pool and properties of PCSCs to orchestrate CRPC progression and prolong the survival of TRAMP mice. IMPA1-derived inositol serves as a cofactor that directly binds to and activates IMPDH2, which synthesizes guanylate nucleotides for maintaining PCSCs with ARlow/- features leading to CRPC progression and ABT resistance. IMPA1/inositol/IMPDH2 axis is upregulated in human prostate cancer, and its overexpression predicts poor survival outcomes. Genetically and pharmacologically targeting the IMPA1/inositol/IMPDH2 axis abrogates CRPC and overcomes ABT resistance in various CRPC xenografts, patient-derived xenograft (PDX) tumor models, and TRAMP mouse models. Our study identifies IMPDH2 as an inositol sensor whose activation by inositol represents a key mechanism for maintaining PCSCs for CRPC and ABT resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
1.30%
发文量
189
审稿时长
3-8 weeks
期刊介绍: Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field. Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions. Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信