Fo Hu;Mengyuan Qian;Kailun He;Wen-An Zhang;Xusheng Yang
{"title":"采用空间分割策略和交叉注意力的新型多特征融合网络,用于基于臂章的手势识别。","authors":"Fo Hu;Mengyuan Qian;Kailun He;Wen-An Zhang;Xusheng Yang","doi":"10.1109/TNSRE.2024.3487216","DOIUrl":null,"url":null,"abstract":"Effectively integrating the time-space-frequency information of multi-modal signals from armband sensor, including surface electromyogram (sEMG) and accelerometer data, is critical for accurate gesture recognition. Existing approaches often neglect the abundant spatial relationships inherent in multi-channel sEMG signals obtained via armband sensors and face challenges in harnessing the correlations across multiple feature domains. To address this issue, we propose a novel multi-feature fusion network with spatial partitioning strategy and cross-attention (MFN-SPSCA) to improve the accuracy and robustness of gesture recognition. Specifically, a spatiotemporal graph convolution module with a spatial partitioning strategy is designed to capture potential spatial feature of multi-channel sEMG signals. Additionally, we design a cross-attention fusion module to learn and prioritize the importance and correlation of multi-feature domain. Extensive experiment demonstrate that the MFN-SPSCA method outperforms other state-of-the-art methods on self-collected dataset and the Ninapro DB5 dataset. Our work addresses the challenge of recognizing gestures from the multi-modal data collected by armband sensor, emphasizing the importance of integrating time-space-frequency information. Codes are available at \n<uri>https://github.com/ZJUTofBrainIntelligence/MFN-SPSCA</uri>\n.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737142","citationCount":"0","resultStr":"{\"title\":\"A Novel Multi-Feature Fusion Network With Spatial Partitioning Strategy and Cross-Attention for Armband-Based Gesture Recognition\",\"authors\":\"Fo Hu;Mengyuan Qian;Kailun He;Wen-An Zhang;Xusheng Yang\",\"doi\":\"10.1109/TNSRE.2024.3487216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effectively integrating the time-space-frequency information of multi-modal signals from armband sensor, including surface electromyogram (sEMG) and accelerometer data, is critical for accurate gesture recognition. Existing approaches often neglect the abundant spatial relationships inherent in multi-channel sEMG signals obtained via armband sensors and face challenges in harnessing the correlations across multiple feature domains. To address this issue, we propose a novel multi-feature fusion network with spatial partitioning strategy and cross-attention (MFN-SPSCA) to improve the accuracy and robustness of gesture recognition. Specifically, a spatiotemporal graph convolution module with a spatial partitioning strategy is designed to capture potential spatial feature of multi-channel sEMG signals. Additionally, we design a cross-attention fusion module to learn and prioritize the importance and correlation of multi-feature domain. Extensive experiment demonstrate that the MFN-SPSCA method outperforms other state-of-the-art methods on self-collected dataset and the Ninapro DB5 dataset. Our work addresses the challenge of recognizing gestures from the multi-modal data collected by armband sensor, emphasizing the importance of integrating time-space-frequency information. Codes are available at \\n<uri>https://github.com/ZJUTofBrainIntelligence/MFN-SPSCA</uri>\\n.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737142/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10737142/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Novel Multi-Feature Fusion Network With Spatial Partitioning Strategy and Cross-Attention for Armband-Based Gesture Recognition
Effectively integrating the time-space-frequency information of multi-modal signals from armband sensor, including surface electromyogram (sEMG) and accelerometer data, is critical for accurate gesture recognition. Existing approaches often neglect the abundant spatial relationships inherent in multi-channel sEMG signals obtained via armband sensors and face challenges in harnessing the correlations across multiple feature domains. To address this issue, we propose a novel multi-feature fusion network with spatial partitioning strategy and cross-attention (MFN-SPSCA) to improve the accuracy and robustness of gesture recognition. Specifically, a spatiotemporal graph convolution module with a spatial partitioning strategy is designed to capture potential spatial feature of multi-channel sEMG signals. Additionally, we design a cross-attention fusion module to learn and prioritize the importance and correlation of multi-feature domain. Extensive experiment demonstrate that the MFN-SPSCA method outperforms other state-of-the-art methods on self-collected dataset and the Ninapro DB5 dataset. Our work addresses the challenge of recognizing gestures from the multi-modal data collected by armband sensor, emphasizing the importance of integrating time-space-frequency information. Codes are available at
https://github.com/ZJUTofBrainIntelligence/MFN-SPSCA
.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.