{"title":"首次评估尼泊尔硬粒小麦十年间的谷物产量和相关性状。","authors":"Dhruba Bahadur Thapa, Mahesh Subedi, Manoj Sapkota, Suman Bohara, Keshab Raj Pokhrel, Laxman Aryal, Basistha Acharya, Santosh Tripathi, Chhotelal Chaudhary, Bramanti Mahato, Krishna Timsina, Velu Govindan, Arun Kumar Joshi","doi":"10.3389/fpls.2024.1456062","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid urbanization and evolving dietary preferences have heightened the demand for durum wheat and its derivatives in developing nations like Nepal. This study represents the first comprehensive exploration and evaluation of durum wheat genotypes in Nepal, addressing the escalating need for high-yielding varieties. The primary objective was to identify stable and prolific durum wheat lines for release, enhancing Nepal's durum wheat breeding program. Utilizing genotypes from CIMMYT's disease screening and yield nurseries from 2011/12 to 2020/21, a total of 132 genotypes, including international checks, underwent evaluation over ten years under the Alpha Lattice design. Results revealed significant variation among genotypes for grain yield and other traits, identifying high-yielding and stable lines suitable for Nepal. Heritability analysis highlighted moderate heritability for grain number per spike, thousand-grain weight, and grain yield. Cluster analysis identified distinct clusters with high grain yield and desirable agronomic traits. Disease incidence facilitated the selection of resistant lines, with DWK38 emerging as the highest grain yielder (4416.04 kg/ha). Overall, durum wheat lines from CIMMYT exhibited robust performance in Nepal, enabling the identification of superior lines with potential benefits for farmers and consumers. The study's implications include developing and releasing superior durum lines in Nepal, providing farmers with profitable alternatives amidst evolving food habits. In conclusion, the findings from this study provide a valuable foundation for future durum wheat breeding efforts in Nepal, guiding the selection of genotypes that are well-suited to the diverse environmental challenges of the region.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513377/pdf/","citationCount":"0","resultStr":"{\"title\":\"The first assessment of grain yield and associated traits in durum wheat across a decade in Nepal.\",\"authors\":\"Dhruba Bahadur Thapa, Mahesh Subedi, Manoj Sapkota, Suman Bohara, Keshab Raj Pokhrel, Laxman Aryal, Basistha Acharya, Santosh Tripathi, Chhotelal Chaudhary, Bramanti Mahato, Krishna Timsina, Velu Govindan, Arun Kumar Joshi\",\"doi\":\"10.3389/fpls.2024.1456062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid urbanization and evolving dietary preferences have heightened the demand for durum wheat and its derivatives in developing nations like Nepal. This study represents the first comprehensive exploration and evaluation of durum wheat genotypes in Nepal, addressing the escalating need for high-yielding varieties. The primary objective was to identify stable and prolific durum wheat lines for release, enhancing Nepal's durum wheat breeding program. Utilizing genotypes from CIMMYT's disease screening and yield nurseries from 2011/12 to 2020/21, a total of 132 genotypes, including international checks, underwent evaluation over ten years under the Alpha Lattice design. Results revealed significant variation among genotypes for grain yield and other traits, identifying high-yielding and stable lines suitable for Nepal. Heritability analysis highlighted moderate heritability for grain number per spike, thousand-grain weight, and grain yield. Cluster analysis identified distinct clusters with high grain yield and desirable agronomic traits. Disease incidence facilitated the selection of resistant lines, with DWK38 emerging as the highest grain yielder (4416.04 kg/ha). Overall, durum wheat lines from CIMMYT exhibited robust performance in Nepal, enabling the identification of superior lines with potential benefits for farmers and consumers. The study's implications include developing and releasing superior durum lines in Nepal, providing farmers with profitable alternatives amidst evolving food habits. In conclusion, the findings from this study provide a valuable foundation for future durum wheat breeding efforts in Nepal, guiding the selection of genotypes that are well-suited to the diverse environmental challenges of the region.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513377/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2024.1456062\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1456062","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The first assessment of grain yield and associated traits in durum wheat across a decade in Nepal.
Rapid urbanization and evolving dietary preferences have heightened the demand for durum wheat and its derivatives in developing nations like Nepal. This study represents the first comprehensive exploration and evaluation of durum wheat genotypes in Nepal, addressing the escalating need for high-yielding varieties. The primary objective was to identify stable and prolific durum wheat lines for release, enhancing Nepal's durum wheat breeding program. Utilizing genotypes from CIMMYT's disease screening and yield nurseries from 2011/12 to 2020/21, a total of 132 genotypes, including international checks, underwent evaluation over ten years under the Alpha Lattice design. Results revealed significant variation among genotypes for grain yield and other traits, identifying high-yielding and stable lines suitable for Nepal. Heritability analysis highlighted moderate heritability for grain number per spike, thousand-grain weight, and grain yield. Cluster analysis identified distinct clusters with high grain yield and desirable agronomic traits. Disease incidence facilitated the selection of resistant lines, with DWK38 emerging as the highest grain yielder (4416.04 kg/ha). Overall, durum wheat lines from CIMMYT exhibited robust performance in Nepal, enabling the identification of superior lines with potential benefits for farmers and consumers. The study's implications include developing and releasing superior durum lines in Nepal, providing farmers with profitable alternatives amidst evolving food habits. In conclusion, the findings from this study provide a valuable foundation for future durum wheat breeding efforts in Nepal, guiding the selection of genotypes that are well-suited to the diverse environmental challenges of the region.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.