Xu Liao, Le Li, Chuangxia Huang, Xian Zhao, Shumin Tan
{"title":"用于自主水下航行器路径规划的噪声决斗双深 Q 网络算法。","authors":"Xu Liao, Le Li, Chuangxia Huang, Xian Zhao, Shumin Tan","doi":"10.3389/fnbot.2024.1466571","DOIUrl":null,"url":null,"abstract":"<p><p>How to improve the success rate of autonomous underwater vehicle (AUV) path planning and reduce travel time as much as possible is a very challenging and crucial problem in the practical applications of AUV in the complex ocean current environment. Traditional reinforcement learning algorithms lack exploration of the environment, and the strategies learned by the agent may not generalize well to other different environments. To address these challenges, we propose a novel AUV path planning algorithm named the Noisy Dueling Double Deep Q-Network (ND3QN) algorithm by modifying the reward function and introducing a noisy network, which generalizes the traditional D3QN algorithm. Compared with the classical algorithm [e.g., Rapidly-exploring Random Trees Star (RRT*), DQN, and D3QN], with simulation experiments conducted in realistic terrain and ocean currents, the proposed ND3QN algorithm demonstrates the outstanding characteristics of a higher success rate of AUV path planning, shorter travel time, and smoother paths.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1466571"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513341/pdf/","citationCount":"0","resultStr":"{\"title\":\"Noisy Dueling Double Deep Q-Network algorithm for autonomous underwater vehicle path planning.\",\"authors\":\"Xu Liao, Le Li, Chuangxia Huang, Xian Zhao, Shumin Tan\",\"doi\":\"10.3389/fnbot.2024.1466571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How to improve the success rate of autonomous underwater vehicle (AUV) path planning and reduce travel time as much as possible is a very challenging and crucial problem in the practical applications of AUV in the complex ocean current environment. Traditional reinforcement learning algorithms lack exploration of the environment, and the strategies learned by the agent may not generalize well to other different environments. To address these challenges, we propose a novel AUV path planning algorithm named the Noisy Dueling Double Deep Q-Network (ND3QN) algorithm by modifying the reward function and introducing a noisy network, which generalizes the traditional D3QN algorithm. Compared with the classical algorithm [e.g., Rapidly-exploring Random Trees Star (RRT*), DQN, and D3QN], with simulation experiments conducted in realistic terrain and ocean currents, the proposed ND3QN algorithm demonstrates the outstanding characteristics of a higher success rate of AUV path planning, shorter travel time, and smoother paths.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"18 \",\"pages\":\"1466571\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1466571\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1466571","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Noisy Dueling Double Deep Q-Network algorithm for autonomous underwater vehicle path planning.
How to improve the success rate of autonomous underwater vehicle (AUV) path planning and reduce travel time as much as possible is a very challenging and crucial problem in the practical applications of AUV in the complex ocean current environment. Traditional reinforcement learning algorithms lack exploration of the environment, and the strategies learned by the agent may not generalize well to other different environments. To address these challenges, we propose a novel AUV path planning algorithm named the Noisy Dueling Double Deep Q-Network (ND3QN) algorithm by modifying the reward function and introducing a noisy network, which generalizes the traditional D3QN algorithm. Compared with the classical algorithm [e.g., Rapidly-exploring Random Trees Star (RRT*), DQN, and D3QN], with simulation experiments conducted in realistic terrain and ocean currents, the proposed ND3QN algorithm demonstrates the outstanding characteristics of a higher success rate of AUV path planning, shorter travel time, and smoother paths.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.