在凯尼酸颞叶癫痫动物模型中进行细菌脂多糖后调节。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mateus Eduardo Herpich , Leonardo de Oliveira Guarnieri , Antônio Carlos Pinheiro de Oliveira , Márcio Flávio Dutra Moraes
{"title":"在凯尼酸颞叶癫痫动物模型中进行细菌脂多糖后调节。","authors":"Mateus Eduardo Herpich ,&nbsp;Leonardo de Oliveira Guarnieri ,&nbsp;Antônio Carlos Pinheiro de Oliveira ,&nbsp;Márcio Flávio Dutra Moraes","doi":"10.1016/j.yebeh.2024.110076","DOIUrl":null,"url":null,"abstract":"<div><div>This study used intra-hippocampal injections of Kainic Acid (KA) in Wistar rats to induce spontaneous recurrent seizures (SRS) after a 9-day latent period. A post-conditioning protocol with LPS, injected at the same site 72 h after the initial KA insult, was employed to trigger secondary competing processes. To evaluate the post-conditioning effect of LPS, 25 animals were divided into four groups: SAL-SAL (n = 6), KA-SAL (n = 6), SAL-LPS (n = 7), and KA-LPS (n = 6). SRS occurrence and seizure duration were quantified through video monitoring from days 9 to 17, along with other ictal behaviors, such as tail-chasing and wet-dog-shakes. Behavioral assessments revealed that the KA-LPS group had preserved sucrose preference and intact long-term memory in the object recognition test, indicating reduced depressive-like behavior and cognitive preservation compared to the KA-SAL group. The forced swim test showed increased depressive-like behavior in the SAL-LPS group, with LPS mitigating these effects in the KA group. The marble-burying test showed no significant differences among groups. Animals were euthanized on day 26, and hippocampal slices were analyzed using fluoro-jade staining for cell death and immunofluorescence staining for Iba-1 (microglia) and GFAP (astrocyte) labeling. The results support the hypothesis that epileptogenesis involves a cascade of plastic changes in neural networks and that precise, timely interventions can potentially interfere with this process.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial Lipopolysaccharide Post-Conditioning in The kainic acid animal model of Temporal Lobe epilepsy\",\"authors\":\"Mateus Eduardo Herpich ,&nbsp;Leonardo de Oliveira Guarnieri ,&nbsp;Antônio Carlos Pinheiro de Oliveira ,&nbsp;Márcio Flávio Dutra Moraes\",\"doi\":\"10.1016/j.yebeh.2024.110076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study used intra-hippocampal injections of Kainic Acid (KA) in Wistar rats to induce spontaneous recurrent seizures (SRS) after a 9-day latent period. A post-conditioning protocol with LPS, injected at the same site 72 h after the initial KA insult, was employed to trigger secondary competing processes. To evaluate the post-conditioning effect of LPS, 25 animals were divided into four groups: SAL-SAL (n = 6), KA-SAL (n = 6), SAL-LPS (n = 7), and KA-LPS (n = 6). SRS occurrence and seizure duration were quantified through video monitoring from days 9 to 17, along with other ictal behaviors, such as tail-chasing and wet-dog-shakes. Behavioral assessments revealed that the KA-LPS group had preserved sucrose preference and intact long-term memory in the object recognition test, indicating reduced depressive-like behavior and cognitive preservation compared to the KA-SAL group. The forced swim test showed increased depressive-like behavior in the SAL-LPS group, with LPS mitigating these effects in the KA group. The marble-burying test showed no significant differences among groups. Animals were euthanized on day 26, and hippocampal slices were analyzed using fluoro-jade staining for cell death and immunofluorescence staining for Iba-1 (microglia) and GFAP (astrocyte) labeling. The results support the hypothesis that epileptogenesis involves a cascade of plastic changes in neural networks and that precise, timely interventions can potentially interfere with this process.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S152550502400458X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152550502400458X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用向 Wistar 大鼠海马内注射凯尼克酸(KA)的方法,诱导经过 9 天潜伏期的自发性复发性癫痫发作(SRS)。在最初的 KA 损伤 72 小时后,在同一部位注射 LPS 进行后条件处理,以触发继发性竞争过程。为了评估 LPS 的后调节效应,25 只动物被分为四组:SAL-SAL组(n = 6)、KA-SAL组(n = 6)、SAL-LPS组(n = 7)和KA-LPS组(n = 6)。从第9天到第17天,通过视频监测对SRS发生率和发作持续时间以及其他发作行为(如追尾和湿狗摇等)进行量化。行为评估显示,与KA-SAL组相比,KA-LPS组在物体识别测试中保留了蔗糖偏好和完整的长期记忆,表明抑郁样行为减少,认知能力得到保护。强迫游泳测试显示,SAL-LPS 组的抑郁样行为增加,而 LPS 可减轻 KA 组的这些影响。大理石掩埋测试显示各组间无显著差异。动物在第 26 天被安乐死,海马切片用荧光玉染色法分析细胞死亡,用免疫荧光染色法分析 Iba-1(小胶质细胞)和 GFAP(星形胶质细胞)标记。研究结果支持以下假设:癫痫的发生涉及神经网络的一连串可塑性变化,而精确、及时的干预措施有可能干扰这一过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacterial Lipopolysaccharide Post-Conditioning in The kainic acid animal model of Temporal Lobe epilepsy
This study used intra-hippocampal injections of Kainic Acid (KA) in Wistar rats to induce spontaneous recurrent seizures (SRS) after a 9-day latent period. A post-conditioning protocol with LPS, injected at the same site 72 h after the initial KA insult, was employed to trigger secondary competing processes. To evaluate the post-conditioning effect of LPS, 25 animals were divided into four groups: SAL-SAL (n = 6), KA-SAL (n = 6), SAL-LPS (n = 7), and KA-LPS (n = 6). SRS occurrence and seizure duration were quantified through video monitoring from days 9 to 17, along with other ictal behaviors, such as tail-chasing and wet-dog-shakes. Behavioral assessments revealed that the KA-LPS group had preserved sucrose preference and intact long-term memory in the object recognition test, indicating reduced depressive-like behavior and cognitive preservation compared to the KA-SAL group. The forced swim test showed increased depressive-like behavior in the SAL-LPS group, with LPS mitigating these effects in the KA group. The marble-burying test showed no significant differences among groups. Animals were euthanized on day 26, and hippocampal slices were analyzed using fluoro-jade staining for cell death and immunofluorescence staining for Iba-1 (microglia) and GFAP (astrocyte) labeling. The results support the hypothesis that epileptogenesis involves a cascade of plastic changes in neural networks and that precise, timely interventions can potentially interfere with this process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信