Oscar Horwath, Marcus Moberg, Sebastian Edman, Andrew Philp, William Apró
{"title":"衰老导致人类骨骼肌选择性 II 型肌纤维退化和去神经支配,而与再神经保存能力无关。","authors":"Oscar Horwath, Marcus Moberg, Sebastian Edman, Andrew Philp, William Apró","doi":"10.1113/EP092222","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related loss of muscle mass and function is underpinned by changes at the myocellular level. However, our understanding of the aged muscle phenotype might be confounded by factors secondary to ageing per se, such as inactivity and adiposity. Here, using healthy, lean, recreationally active, older men, we investigated the impact of ageing on myocellular properties in skeletal muscle. Muscle biopsies were obtained from young men (22 ± 3 years, n = 10) and older men (69 ± 3 years, n = 11) matched for health status, activity level and body mass index. Immunofluorescence was used to assess myofibre composition, morphology (size and shape), capillarization, the content of satellite cells and myonuclei, the spatial relationship between satellite cells and capillaries, denervation and myofibre grouping. Compared with young muscle, aged muscle contained 53% more type I myofibres, in addition to smaller (-32%) and misshapen (3%) type II myofibres (P < 0.05). Aged muscle manifested fewer capillaries (-29%) and satellite cells (-38%) surrounding type II myofibres (P < 0.05); however, the spatial relationship between these two remained intact. The proportion of denervated myofibres was ∼2.6-fold higher in old than young muscle (P < 0.05). Aged muscle had more grouped type I myofibres (∼18-fold), primarily driven by increased size of existing groups rather than increased group frequency (P < 0.05). Aged muscle displayed selective deterioration of type II myofibres alongside increased denervation and myofibre grouping. These data are key to understanding the cellular basis of age-related muscle decline and reveal a pressing need to fine-tune strategies to preserve type II myofibres and innervation status in ageing populations.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ageing leads to selective type II myofibre deterioration and denervation independent of reinnervative capacity in human skeletal muscle.\",\"authors\":\"Oscar Horwath, Marcus Moberg, Sebastian Edman, Andrew Philp, William Apró\",\"doi\":\"10.1113/EP092222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age-related loss of muscle mass and function is underpinned by changes at the myocellular level. However, our understanding of the aged muscle phenotype might be confounded by factors secondary to ageing per se, such as inactivity and adiposity. Here, using healthy, lean, recreationally active, older men, we investigated the impact of ageing on myocellular properties in skeletal muscle. Muscle biopsies were obtained from young men (22 ± 3 years, n = 10) and older men (69 ± 3 years, n = 11) matched for health status, activity level and body mass index. Immunofluorescence was used to assess myofibre composition, morphology (size and shape), capillarization, the content of satellite cells and myonuclei, the spatial relationship between satellite cells and capillaries, denervation and myofibre grouping. Compared with young muscle, aged muscle contained 53% more type I myofibres, in addition to smaller (-32%) and misshapen (3%) type II myofibres (P < 0.05). Aged muscle manifested fewer capillaries (-29%) and satellite cells (-38%) surrounding type II myofibres (P < 0.05); however, the spatial relationship between these two remained intact. The proportion of denervated myofibres was ∼2.6-fold higher in old than young muscle (P < 0.05). Aged muscle had more grouped type I myofibres (∼18-fold), primarily driven by increased size of existing groups rather than increased group frequency (P < 0.05). Aged muscle displayed selective deterioration of type II myofibres alongside increased denervation and myofibre grouping. These data are key to understanding the cellular basis of age-related muscle decline and reveal a pressing need to fine-tune strategies to preserve type II myofibres and innervation status in ageing populations.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092222\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
与年龄相关的肌肉质量和功能损失是由肌细胞水平的变化所支撑的。然而,我们对老年肌肉表型的理解可能会受到老化本身的次要因素(如不活动和脂肪过多)的干扰。在此,我们利用健康、精瘦、喜欢娱乐活动的老年男性,研究了衰老对骨骼肌肌细胞特性的影响。肌肉活检取自健康状况、活动水平和体重指数相匹配的年轻男性(22 ± 3 岁,n = 10)和老年男性(69 ± 3 岁,n = 11)。免疫荧光法用于评估肌纤维的组成、形态(大小和形状)、毛细血管化、卫星细胞和肌核的含量、卫星细胞和毛细血管之间的空间关系、神经变性和肌纤维分组。与年轻肌肉相比,老年肌肉中的 I 型肌纤维增加了 53%,而 II 型肌纤维则变小(-32%)和畸形(3%)(P<0.05)。
Ageing leads to selective type II myofibre deterioration and denervation independent of reinnervative capacity in human skeletal muscle.
Age-related loss of muscle mass and function is underpinned by changes at the myocellular level. However, our understanding of the aged muscle phenotype might be confounded by factors secondary to ageing per se, such as inactivity and adiposity. Here, using healthy, lean, recreationally active, older men, we investigated the impact of ageing on myocellular properties in skeletal muscle. Muscle biopsies were obtained from young men (22 ± 3 years, n = 10) and older men (69 ± 3 years, n = 11) matched for health status, activity level and body mass index. Immunofluorescence was used to assess myofibre composition, morphology (size and shape), capillarization, the content of satellite cells and myonuclei, the spatial relationship between satellite cells and capillaries, denervation and myofibre grouping. Compared with young muscle, aged muscle contained 53% more type I myofibres, in addition to smaller (-32%) and misshapen (3%) type II myofibres (P < 0.05). Aged muscle manifested fewer capillaries (-29%) and satellite cells (-38%) surrounding type II myofibres (P < 0.05); however, the spatial relationship between these two remained intact. The proportion of denervated myofibres was ∼2.6-fold higher in old than young muscle (P < 0.05). Aged muscle had more grouped type I myofibres (∼18-fold), primarily driven by increased size of existing groups rather than increased group frequency (P < 0.05). Aged muscle displayed selective deterioration of type II myofibres alongside increased denervation and myofibre grouping. These data are key to understanding the cellular basis of age-related muscle decline and reveal a pressing need to fine-tune strategies to preserve type II myofibres and innervation status in ageing populations.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.