概率自适应地将外部总体信息与生存数据的不确定性结合起来。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae120
Ziqi Chen, Yu Shen, Jing Qin, Jing Ning
{"title":"概率自适应地将外部总体信息与生存数据的不确定性结合起来。","authors":"Ziqi Chen, Yu Shen, Jing Qin, Jing Ning","doi":"10.1093/biomtc/ujae120","DOIUrl":null,"url":null,"abstract":"<p><p>Population-based cancer registry databases are critical resources to bridge the information gap that results from a lack of sufficient statistical power from primary cohort data with small to moderate sample size. Although comprehensive data associated with tumor biomarkers often remain either unavailable or inconsistently measured in these registry databases, aggregate survival information sourced from these repositories has been well documented and publicly accessible. An appealing option is to integrate the aggregate survival information from the registry data with the primary cohort to enhance the evaluation of treatment impacts or prediction of survival outcomes across distinct tumor subtypes. Nevertheless, for rare types of cancer, even the sample sizes of cancer registries remain modest. The variability linked to the aggregated statistics could be non-negligible compared with the sample variation of the primary cohort. In response, we propose an externally informed likelihood approach, which facilitates the linkage between the primary cohort and external aggregate data, with consideration of the variation from aggregate information. We establish the asymptotic properties of the estimators and evaluate the finite sample performance via simulation studies. Through the application of our proposed method, we integrate data from the cohort of inflammatory breast cancer (IBC) patients at the University of Texas MD Anderson Cancer Center with aggregate survival data from the National Cancer Data Base, enabling us to appraise the effect of tri-modality treatment on survival across various tumor subtypes of IBC.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Likelihood adaptively incorporated external aggregate information with uncertainty for survival data.\",\"authors\":\"Ziqi Chen, Yu Shen, Jing Qin, Jing Ning\",\"doi\":\"10.1093/biomtc/ujae120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Population-based cancer registry databases are critical resources to bridge the information gap that results from a lack of sufficient statistical power from primary cohort data with small to moderate sample size. Although comprehensive data associated with tumor biomarkers often remain either unavailable or inconsistently measured in these registry databases, aggregate survival information sourced from these repositories has been well documented and publicly accessible. An appealing option is to integrate the aggregate survival information from the registry data with the primary cohort to enhance the evaluation of treatment impacts or prediction of survival outcomes across distinct tumor subtypes. Nevertheless, for rare types of cancer, even the sample sizes of cancer registries remain modest. The variability linked to the aggregated statistics could be non-negligible compared with the sample variation of the primary cohort. In response, we propose an externally informed likelihood approach, which facilitates the linkage between the primary cohort and external aggregate data, with consideration of the variation from aggregate information. We establish the asymptotic properties of the estimators and evaluate the finite sample performance via simulation studies. Through the application of our proposed method, we integrate data from the cohort of inflammatory breast cancer (IBC) patients at the University of Texas MD Anderson Cancer Center with aggregate survival data from the National Cancer Data Base, enabling us to appraise the effect of tri-modality treatment on survival across various tumor subtypes of IBC.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 4\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae120\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae120","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于人群的癌症登记数据库是弥合信息差距的重要资源,而信息差距是由于样本量小到中等的原始队列数据缺乏足够的统计能力造成的。虽然与肿瘤生物标记物相关的综合数据在这些登记数据库中往往无法获得或测量结果不一致,但从这些资料库中获得的总体生存信息已被详细记录并可公开获取。一个吸引人的选择是将登记数据中的总体生存信息与原始队列整合起来,以加强对不同肿瘤亚型的治疗效果评估或生存结果预测。然而,对于罕见类型的癌症,即使是癌症登记处的样本量也仍然不大。与原始队列的样本变异相比,与汇总统计相关的变异可能是不可忽略的。为此,我们提出了一种外部知情似然法,这种方法有助于将原始队列和外部总体数据联系起来,并考虑到总体信息的变异。我们建立了估计器的渐近特性,并通过模拟研究评估了有限样本的性能。通过应用我们提出的方法,我们将得克萨斯大学 MD 安德森癌症中心的炎性乳腺癌(IBC)患者队列数据与国家癌症数据库的总体生存数据进行了整合,从而评估了三模式治疗对不同肿瘤亚型 IBC 患者生存的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Likelihood adaptively incorporated external aggregate information with uncertainty for survival data.

Population-based cancer registry databases are critical resources to bridge the information gap that results from a lack of sufficient statistical power from primary cohort data with small to moderate sample size. Although comprehensive data associated with tumor biomarkers often remain either unavailable or inconsistently measured in these registry databases, aggregate survival information sourced from these repositories has been well documented and publicly accessible. An appealing option is to integrate the aggregate survival information from the registry data with the primary cohort to enhance the evaluation of treatment impacts or prediction of survival outcomes across distinct tumor subtypes. Nevertheless, for rare types of cancer, even the sample sizes of cancer registries remain modest. The variability linked to the aggregated statistics could be non-negligible compared with the sample variation of the primary cohort. In response, we propose an externally informed likelihood approach, which facilitates the linkage between the primary cohort and external aggregate data, with consideration of the variation from aggregate information. We establish the asymptotic properties of the estimators and evaluate the finite sample performance via simulation studies. Through the application of our proposed method, we integrate data from the cohort of inflammatory breast cancer (IBC) patients at the University of Texas MD Anderson Cancer Center with aggregate survival data from the National Cancer Data Base, enabling us to appraise the effect of tri-modality treatment on survival across various tumor subtypes of IBC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信