Aida Solé-Medina, Agathe Hurel, Camilla Avanzi, Santiago C González-Martinez, Giovanni G Vendramin, Francesca Bagnoli, Andrea Piotti, Maurizio Marchi, Ilaria Spanu, Juan José Robledo-Arnuncio, José Alberto Ramírez-Valiente
{"title":"海洋松(Pinus pinaster Ait.)种群早期健康性状的宏观和微观地理遗传变异。","authors":"Aida Solé-Medina, Agathe Hurel, Camilla Avanzi, Santiago C González-Martinez, Giovanni G Vendramin, Francesca Bagnoli, Andrea Piotti, Maurizio Marchi, Ilaria Spanu, Juan José Robledo-Arnuncio, José Alberto Ramírez-Valiente","doi":"10.1093/aob/mcae190","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Assessing adaptive genetic variation and its spatial distribution is crucial to conserve forest genetic resources and manage species' adaptive potential. Macro-environmental gradients commonly exert divergent selective pressures that enhance adaptive genetic divergence among populations. Steep micro-environmental variation might also result in adaptive divergence at finer spatial scales, even under high gene flow, but it is unclear how often this is the case. Here, we assess genetic variation in early fitness traits among distant and nearby maritime pine (Pinus pinaster Ait.) populations, to investigate climatic factors associated with trait divergence, and to examine trait integration during seedling establishment.</p><p><strong>Methods: </strong>Open pollinated seeds were collected from seven population pairs across the European species distribution, with paired populations spatially close (between <1 km up to 21 km) but environmentally divergent. Seeds were sown in semi-natural conditions at three environmentally contrasting sites, where we monitored seedling emergence, growth and survival.</p><p><strong>Key results: </strong>At large spatial scales, we found significant genetic divergence among populations in all studied traits, with certain traits exhibiting association with temperature and precipitation gradients. Significant trait divergence was also detected between pairs of nearby populations. Besides, we found consistent trait correlations across experimental sites, notably heavier seeds and earlier seedling emergence were both associated with higher seedling survival and fitness over two years in all experimental conditions.</p><p><strong>Conclusions: </strong>We identified mean annual temperature and precipitation seasonality as potential drivers of P. pinaster population divergence in the studied early-life traits. Populations genetically diverge also at local spatial scales, potentially suggesting that divergent natural selection can override gene flow along local-scale ecological gradients. These results suggest the species exhibits substantial adaptive potential that has allowed it to survive and evolve under contrasting environmental conditions.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macro- and micro-geographic genetic variation in early fitness traits in populations of maritime pine (Pinus pinaster Ait.).\",\"authors\":\"Aida Solé-Medina, Agathe Hurel, Camilla Avanzi, Santiago C González-Martinez, Giovanni G Vendramin, Francesca Bagnoli, Andrea Piotti, Maurizio Marchi, Ilaria Spanu, Juan José Robledo-Arnuncio, José Alberto Ramírez-Valiente\",\"doi\":\"10.1093/aob/mcae190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Assessing adaptive genetic variation and its spatial distribution is crucial to conserve forest genetic resources and manage species' adaptive potential. Macro-environmental gradients commonly exert divergent selective pressures that enhance adaptive genetic divergence among populations. Steep micro-environmental variation might also result in adaptive divergence at finer spatial scales, even under high gene flow, but it is unclear how often this is the case. Here, we assess genetic variation in early fitness traits among distant and nearby maritime pine (Pinus pinaster Ait.) populations, to investigate climatic factors associated with trait divergence, and to examine trait integration during seedling establishment.</p><p><strong>Methods: </strong>Open pollinated seeds were collected from seven population pairs across the European species distribution, with paired populations spatially close (between <1 km up to 21 km) but environmentally divergent. Seeds were sown in semi-natural conditions at three environmentally contrasting sites, where we monitored seedling emergence, growth and survival.</p><p><strong>Key results: </strong>At large spatial scales, we found significant genetic divergence among populations in all studied traits, with certain traits exhibiting association with temperature and precipitation gradients. Significant trait divergence was also detected between pairs of nearby populations. Besides, we found consistent trait correlations across experimental sites, notably heavier seeds and earlier seedling emergence were both associated with higher seedling survival and fitness over two years in all experimental conditions.</p><p><strong>Conclusions: </strong>We identified mean annual temperature and precipitation seasonality as potential drivers of P. pinaster population divergence in the studied early-life traits. Populations genetically diverge also at local spatial scales, potentially suggesting that divergent natural selection can override gene flow along local-scale ecological gradients. These results suggest the species exhibits substantial adaptive potential that has allowed it to survive and evolve under contrasting environmental conditions.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae190\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae190","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Macro- and micro-geographic genetic variation in early fitness traits in populations of maritime pine (Pinus pinaster Ait.).
Background and aims: Assessing adaptive genetic variation and its spatial distribution is crucial to conserve forest genetic resources and manage species' adaptive potential. Macro-environmental gradients commonly exert divergent selective pressures that enhance adaptive genetic divergence among populations. Steep micro-environmental variation might also result in adaptive divergence at finer spatial scales, even under high gene flow, but it is unclear how often this is the case. Here, we assess genetic variation in early fitness traits among distant and nearby maritime pine (Pinus pinaster Ait.) populations, to investigate climatic factors associated with trait divergence, and to examine trait integration during seedling establishment.
Methods: Open pollinated seeds were collected from seven population pairs across the European species distribution, with paired populations spatially close (between <1 km up to 21 km) but environmentally divergent. Seeds were sown in semi-natural conditions at three environmentally contrasting sites, where we monitored seedling emergence, growth and survival.
Key results: At large spatial scales, we found significant genetic divergence among populations in all studied traits, with certain traits exhibiting association with temperature and precipitation gradients. Significant trait divergence was also detected between pairs of nearby populations. Besides, we found consistent trait correlations across experimental sites, notably heavier seeds and earlier seedling emergence were both associated with higher seedling survival and fitness over two years in all experimental conditions.
Conclusions: We identified mean annual temperature and precipitation seasonality as potential drivers of P. pinaster population divergence in the studied early-life traits. Populations genetically diverge also at local spatial scales, potentially suggesting that divergent natural selection can override gene flow along local-scale ecological gradients. These results suggest the species exhibits substantial adaptive potential that has allowed it to survive and evolve under contrasting environmental conditions.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.