脂质代谢提高了欧洲盐生草本植物的耐盐性。

IF 3.6 2区 生物学 Q1 PLANT SCIENCES
Lei Yang, Yanzhi Wang, Yang Bai, Jiahui Yang, Yunyan Gao, Chenxue Hou, Mengya Gao, Xinlu Gu, Weizhong Liu
{"title":"脂质代谢提高了欧洲盐生草本植物的耐盐性。","authors":"Lei Yang, Yanzhi Wang, Yang Bai, Jiahui Yang, Yunyan Gao, Chenxue Hou, Mengya Gao, Xinlu Gu, Weizhong Liu","doi":"10.1093/aob/mcae189","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Salicornia europaea L., a succulent euhalophyte plant, has been found to exhibit optimal reproductive capabilities under appropriate salinity concentrations. However, the underlying metabolic changes are not yet fully understood.</p><p><strong>Methods: </strong>This study conducted a comprehensive analysis combining transcriptomic and lipidomic techniques to investigate the molecular mechanisms of lipid metabolism in response to different NaCl concentrations (0 and 200 mM).</p><p><strong>Results: </strong>Transcriptomic data demonstrated that salt treatment mainly affected processes including lipid biosynthesis, phosphatidylinositol signaling, and glycerophospholipid metabolism. The expression levels of several key genes involved in salt tolerance, namely SeSOS1, SeNHX1, SeVHA-A, SeVP1, and SePSS, were found to be upregulated upon NaCl treatment. A total of 485 lipid compounds were identified, of which 27 changed in abundance under salt treatment, including the enrichment of phospholipids and sphingolipids. Moreover, the increase in the double-bond index (DBI) was mainly due to phospholipids and sphingolipids. Comparing the acyl chain length (ACL) showed that the ACL coefficient of S1P significantly decreased under 200 mM NaCl.</p><p><strong>Conclusions: </strong>This study suggests that S. europaea adapt to saline environments through altering phospholipids and sphingolipids to improve salt tolerance. The salinity response of S. europaea can provide important insights into the action of lipids and their salt adaptation mechanisms.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid metabolism improves salt tolerance of Salicornia europaea.\",\"authors\":\"Lei Yang, Yanzhi Wang, Yang Bai, Jiahui Yang, Yunyan Gao, Chenxue Hou, Mengya Gao, Xinlu Gu, Weizhong Liu\",\"doi\":\"10.1093/aob/mcae189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Salicornia europaea L., a succulent euhalophyte plant, has been found to exhibit optimal reproductive capabilities under appropriate salinity concentrations. However, the underlying metabolic changes are not yet fully understood.</p><p><strong>Methods: </strong>This study conducted a comprehensive analysis combining transcriptomic and lipidomic techniques to investigate the molecular mechanisms of lipid metabolism in response to different NaCl concentrations (0 and 200 mM).</p><p><strong>Results: </strong>Transcriptomic data demonstrated that salt treatment mainly affected processes including lipid biosynthesis, phosphatidylinositol signaling, and glycerophospholipid metabolism. The expression levels of several key genes involved in salt tolerance, namely SeSOS1, SeNHX1, SeVHA-A, SeVP1, and SePSS, were found to be upregulated upon NaCl treatment. A total of 485 lipid compounds were identified, of which 27 changed in abundance under salt treatment, including the enrichment of phospholipids and sphingolipids. Moreover, the increase in the double-bond index (DBI) was mainly due to phospholipids and sphingolipids. Comparing the acyl chain length (ACL) showed that the ACL coefficient of S1P significantly decreased under 200 mM NaCl.</p><p><strong>Conclusions: </strong>This study suggests that S. europaea adapt to saline environments through altering phospholipids and sphingolipids to improve salt tolerance. The salinity response of S. europaea can provide important insights into the action of lipids and their salt adaptation mechanisms.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae189\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae189","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的盐生欧鼠李属(Salicornia europaea L.)是一种肉质藻类植物,已被发现在适当的盐度浓度下表现出最佳的繁殖能力。然而,人们尚未完全了解其背后的代谢变化:方法:本研究结合转录组学和脂质组学技术进行了综合分析,以研究不同浓度(0 和 200 mM)NaCl 对脂质代谢的分子机制:转录组数据表明,盐处理主要影响脂质生物合成、磷脂酰肌醇信号转导和甘油磷脂代谢等过程。研究发现,耐盐的几个关键基因,即 SeSOS1、SeNHX1、SeVHA-A、SeVP1 和 SePSS 的表达水平在 NaCl 处理后上调。共鉴定出 485 种脂质化合物,其中 27 种在盐处理条件下丰度发生变化,包括磷脂和鞘脂的富集。此外,双键指数(DBI)的增加主要归因于磷脂和鞘脂。比较酰基链长度(ACL)发现,在 200 mM NaCl 条件下,S1P 的 ACL 系数明显下降:本研究表明,欧鼠李通过改变磷脂和鞘脂来提高耐盐性,从而适应盐环境。欧鼠李的盐度反应可为了解脂质的作用及其盐适应机制提供重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipid metabolism improves salt tolerance of Salicornia europaea.

Background and aims: Salicornia europaea L., a succulent euhalophyte plant, has been found to exhibit optimal reproductive capabilities under appropriate salinity concentrations. However, the underlying metabolic changes are not yet fully understood.

Methods: This study conducted a comprehensive analysis combining transcriptomic and lipidomic techniques to investigate the molecular mechanisms of lipid metabolism in response to different NaCl concentrations (0 and 200 mM).

Results: Transcriptomic data demonstrated that salt treatment mainly affected processes including lipid biosynthesis, phosphatidylinositol signaling, and glycerophospholipid metabolism. The expression levels of several key genes involved in salt tolerance, namely SeSOS1, SeNHX1, SeVHA-A, SeVP1, and SePSS, were found to be upregulated upon NaCl treatment. A total of 485 lipid compounds were identified, of which 27 changed in abundance under salt treatment, including the enrichment of phospholipids and sphingolipids. Moreover, the increase in the double-bond index (DBI) was mainly due to phospholipids and sphingolipids. Comparing the acyl chain length (ACL) showed that the ACL coefficient of S1P significantly decreased under 200 mM NaCl.

Conclusions: This study suggests that S. europaea adapt to saline environments through altering phospholipids and sphingolipids to improve salt tolerance. The salinity response of S. europaea can provide important insights into the action of lipids and their salt adaptation mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of botany
Annals of botany 生物-植物科学
CiteScore
7.90
自引率
4.80%
发文量
138
审稿时长
3 months
期刊介绍: Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide. The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信