Namanpreet Kaur, Michelle C do Rosario, Purvi Majethia, Selinda Mascarenhas, Lakshmi Priya Rao, Karthik Vijay Nair, Bhagesh Hunakunti, Adarsh Pooradan Prasannakumar, Rohit Naik, Dhanya Lakshmi Narayanan, Shalini S Nayak, Vivekananda Bhat, Suvasini Sharma, Y Ramesh Bhat, B L Yatheesha, Rajesh Kulkarni, Siddaramappa J Patil, Sheela Nampoothiri, Shahyan Siddiqui, Katta Mohan Girisha, Stephanie Bielas, Anju Shukla
{"title":"从神经成像到基因型:划定印度人群髓鞘缺失症的范围","authors":"Namanpreet Kaur, Michelle C do Rosario, Purvi Majethia, Selinda Mascarenhas, Lakshmi Priya Rao, Karthik Vijay Nair, Bhagesh Hunakunti, Adarsh Pooradan Prasannakumar, Rohit Naik, Dhanya Lakshmi Narayanan, Shalini S Nayak, Vivekananda Bhat, Suvasini Sharma, Y Ramesh Bhat, B L Yatheesha, Rajesh Kulkarni, Siddaramappa J Patil, Sheela Nampoothiri, Shahyan Siddiqui, Katta Mohan Girisha, Stephanie Bielas, Anju Shukla","doi":"10.1002/ajmg.a.63914","DOIUrl":null,"url":null,"abstract":"<p><p>Several genetic disorders are associated with either a permanent deficit or a delay in central nervous system myelination. We investigated 24 unrelated families (25 individuals) with deficient myelination after clinical and radiological evaluation. A combinatorial approach of targeting and/or genomic testing was employed. Molecular diagnosis was achieved in 22 out of 24 families (92%). Four families (4/9, 44%) were diagnosed with targeted testing and 18 families (18/23, 78%) were diagnosed using broad genomic testing. Overall, 14 monogenic disorders were identified. Twenty disease-causing variants were identified in 14 genes including PLP1, GJC2, POLR1C, TUBB4A, UFM1, NKX6-2, DEGS1, RNASEH2C, HEXA, ATP7A, SETBP1, GRIN2B, OCLN, and ZBTB18. Among these, nine (45%) variants are novel. Fourteen families (82%, 14/17) were diagnosed using proband-only exome sequencing (ES) complemented with deep phenotyping, thus highlighting the utility of singleton ES as a valuable diagnostic tool for identifying these disorders in resource-limited settings.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroimaging to Genotype: Delineating the Spectrum of Disorders With Deficient Myelination in the Indian Population.\",\"authors\":\"Namanpreet Kaur, Michelle C do Rosario, Purvi Majethia, Selinda Mascarenhas, Lakshmi Priya Rao, Karthik Vijay Nair, Bhagesh Hunakunti, Adarsh Pooradan Prasannakumar, Rohit Naik, Dhanya Lakshmi Narayanan, Shalini S Nayak, Vivekananda Bhat, Suvasini Sharma, Y Ramesh Bhat, B L Yatheesha, Rajesh Kulkarni, Siddaramappa J Patil, Sheela Nampoothiri, Shahyan Siddiqui, Katta Mohan Girisha, Stephanie Bielas, Anju Shukla\",\"doi\":\"10.1002/ajmg.a.63914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several genetic disorders are associated with either a permanent deficit or a delay in central nervous system myelination. We investigated 24 unrelated families (25 individuals) with deficient myelination after clinical and radiological evaluation. A combinatorial approach of targeting and/or genomic testing was employed. Molecular diagnosis was achieved in 22 out of 24 families (92%). Four families (4/9, 44%) were diagnosed with targeted testing and 18 families (18/23, 78%) were diagnosed using broad genomic testing. Overall, 14 monogenic disorders were identified. Twenty disease-causing variants were identified in 14 genes including PLP1, GJC2, POLR1C, TUBB4A, UFM1, NKX6-2, DEGS1, RNASEH2C, HEXA, ATP7A, SETBP1, GRIN2B, OCLN, and ZBTB18. Among these, nine (45%) variants are novel. Fourteen families (82%, 14/17) were diagnosed using proband-only exome sequencing (ES) complemented with deep phenotyping, thus highlighting the utility of singleton ES as a valuable diagnostic tool for identifying these disorders in resource-limited settings.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/ajmg.a.63914\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajmg.a.63914","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Neuroimaging to Genotype: Delineating the Spectrum of Disorders With Deficient Myelination in the Indian Population.
Several genetic disorders are associated with either a permanent deficit or a delay in central nervous system myelination. We investigated 24 unrelated families (25 individuals) with deficient myelination after clinical and radiological evaluation. A combinatorial approach of targeting and/or genomic testing was employed. Molecular diagnosis was achieved in 22 out of 24 families (92%). Four families (4/9, 44%) were diagnosed with targeted testing and 18 families (18/23, 78%) were diagnosed using broad genomic testing. Overall, 14 monogenic disorders were identified. Twenty disease-causing variants were identified in 14 genes including PLP1, GJC2, POLR1C, TUBB4A, UFM1, NKX6-2, DEGS1, RNASEH2C, HEXA, ATP7A, SETBP1, GRIN2B, OCLN, and ZBTB18. Among these, nine (45%) variants are novel. Fourteen families (82%, 14/17) were diagnosed using proband-only exome sequencing (ES) complemented with deep phenotyping, thus highlighting the utility of singleton ES as a valuable diagnostic tool for identifying these disorders in resource-limited settings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.