陶瓷内部和氧化镁晶粒之间:晶间半导体或磁性尖晶石的固态合成。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Thomas Schwab, Korbinian Aicher, Gregor A Zickler, Michael Reissner, Oliver Diwald
{"title":"陶瓷内部和氧化镁晶粒之间:晶间半导体或磁性尖晶石的固态合成。","authors":"Thomas Schwab, Korbinian Aicher, Gregor A Zickler, Michael Reissner, Oliver Diwald","doi":"10.1002/smtd.202400715","DOIUrl":null,"url":null,"abstract":"<p><p>Configurations of composite metal oxide nanoparticles are typically far off their thermodynamic equilibrium state. As such they represent a versatile but so far overlooked source material for the intergranular solid-state chemistry inside ceramics. Here, it is demonstrated how the admixture of Fe<sup>3+</sup> and In<sup>3+</sup> ions to MgO nanoparticles, as achieved by flame spray pyrolysis, can be used to engage ion exsolution, phase separation, and subsequent spinel formation inside the network of diamagnetic and insulating MgO grains. Extremely high uniformity in the distribution of intergranular ferrimagnetic MgFe<sub>2</sub>O<sub>4</sub> films and grains with resulting magnetic coercivity values that depend on the nanoparticles' initial Fe<sup>3+</sup> concentration is achieved. Moreover, percolating networks of semiconducting MgIn<sub>2</sub>O<sub>4</sub> are derived from MgO nanoparticles with admixtures of 20 at% In<sup>3+</sup> that gives rise to an enhancement of dc conductivity values by more than five orders of magnitude in comparison to the insulating MgO host. The here presented approach is general and applicable to the synthesis of a variety of functional spinel nanostructures embedded inside ceramic matrices. Nanoparticle loading with aliovalent impurity ions, the level of nanoparticle powder density after compaction, and sintering temperature are key parameters for this novel type of solid-state chemistry in between the host grains.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400715"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inside Ceramics and Between MgO Grains: Solid-State Synthesis of Intergranular Semiconducting or Magnetic Spinels.\",\"authors\":\"Thomas Schwab, Korbinian Aicher, Gregor A Zickler, Michael Reissner, Oliver Diwald\",\"doi\":\"10.1002/smtd.202400715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Configurations of composite metal oxide nanoparticles are typically far off their thermodynamic equilibrium state. As such they represent a versatile but so far overlooked source material for the intergranular solid-state chemistry inside ceramics. Here, it is demonstrated how the admixture of Fe<sup>3+</sup> and In<sup>3+</sup> ions to MgO nanoparticles, as achieved by flame spray pyrolysis, can be used to engage ion exsolution, phase separation, and subsequent spinel formation inside the network of diamagnetic and insulating MgO grains. Extremely high uniformity in the distribution of intergranular ferrimagnetic MgFe<sub>2</sub>O<sub>4</sub> films and grains with resulting magnetic coercivity values that depend on the nanoparticles' initial Fe<sup>3+</sup> concentration is achieved. Moreover, percolating networks of semiconducting MgIn<sub>2</sub>O<sub>4</sub> are derived from MgO nanoparticles with admixtures of 20 at% In<sup>3+</sup> that gives rise to an enhancement of dc conductivity values by more than five orders of magnitude in comparison to the insulating MgO host. The here presented approach is general and applicable to the synthesis of a variety of functional spinel nanostructures embedded inside ceramic matrices. Nanoparticle loading with aliovalent impurity ions, the level of nanoparticle powder density after compaction, and sintering temperature are key parameters for this novel type of solid-state chemistry in between the host grains.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2400715\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202400715\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400715","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

复合金属氧化物纳米粒子的结构通常远远偏离其热力学平衡状态。因此,它们是陶瓷内部晶间固态化学的一种用途广泛但至今被忽视的原料。本文展示了如何通过火焰喷射热解将 Fe3+ 和 In3+ 离子掺入氧化镁纳米颗粒,从而在二磁性和绝缘性氧化镁晶粒网络内部实现离子溶出、相分离以及随后尖晶石的形成。晶间铁磁性 MgFe2O4 薄膜和晶粒的分布具有极高的均匀性,由此产生的磁矫顽力值取决于纳米粒子的初始 Fe3+ 浓度。此外,从掺入 20% In3+ 的氧化镁纳米粒子中还衍生出了半导体 MgIn2O4 的渗流网络,与绝缘的氧化镁基体相比,直流电导值提高了五个数量级以上。本文介绍的方法具有通用性,适用于合成嵌入陶瓷基质的各种功能性尖晶石纳米结构。纳米粒子的异价杂质离子负载、压实后的纳米粒子粉末密度水平以及烧结温度是在主晶粒之间进行这种新型固态化学反应的关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inside Ceramics and Between MgO Grains: Solid-State Synthesis of Intergranular Semiconducting or Magnetic Spinels.

Configurations of composite metal oxide nanoparticles are typically far off their thermodynamic equilibrium state. As such they represent a versatile but so far overlooked source material for the intergranular solid-state chemistry inside ceramics. Here, it is demonstrated how the admixture of Fe3+ and In3+ ions to MgO nanoparticles, as achieved by flame spray pyrolysis, can be used to engage ion exsolution, phase separation, and subsequent spinel formation inside the network of diamagnetic and insulating MgO grains. Extremely high uniformity in the distribution of intergranular ferrimagnetic MgFe2O4 films and grains with resulting magnetic coercivity values that depend on the nanoparticles' initial Fe3+ concentration is achieved. Moreover, percolating networks of semiconducting MgIn2O4 are derived from MgO nanoparticles with admixtures of 20 at% In3+ that gives rise to an enhancement of dc conductivity values by more than five orders of magnitude in comparison to the insulating MgO host. The here presented approach is general and applicable to the synthesis of a variety of functional spinel nanostructures embedded inside ceramic matrices. Nanoparticle loading with aliovalent impurity ions, the level of nanoparticle powder density after compaction, and sintering temperature are key parameters for this novel type of solid-state chemistry in between the host grains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信