聚甲基倍半氧烷微球显著提高了聚合物电介质的高温储能。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zelong Chang, Li Lei, Linwei Zhu, Yang Quan, Zengliang Ren, Yihui Qian, Davoud Dastan, Zhicheng Shi
{"title":"聚甲基倍半氧烷微球显著提高了聚合物电介质的高温储能。","authors":"Zelong Chang, Li Lei, Linwei Zhu, Yang Quan, Zengliang Ren, Yihui Qian, Davoud Dastan, Zhicheng Shi","doi":"10.1039/d4mh01305k","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer dielectrics are the key materials in next-generation electrical power systems. However, they usually suffer from dramatic deterioration of capacitive performance at high temperatures. In this work, we demonstrate that polymethylsesquioxane (PMSQ) microspheres with a unique organic-inorganic hybrid structure can remarkably enhance the energy storage performance of a typical high-temperature dielectric polymer polyetherimide (PEI). Compared with traditional ceramic fillers, there exists -CH<sub>3</sub> on the surface of PMSQ microspheres, which results in good compatibility between PMSQ and PEI. In addition, the PMSQ microspheres with excellent insulating properties can effectively block the charge transport, yielding significantly enhanced breakdown and energy storage performance. Consequently, the PEI based composite film with 5 wt% PMSQ microspheres exhibits ultrahigh energy storage densities of 12.83 J cm<sup>-3</sup> and 9.40 J cm<sup>-3</sup> with an efficiency (<i>η</i>) above 90% at 150 °C and 200 °C, respectively, which are 10.5 and 50.5 times those of the pure PEI film. This work demonstrates that microspheres with an organic-inorganic hybrid structure are excellent candidates for enhancing the high-temperature performance of polymer dielectrics, and these PMSQ/PEI composite films have huge potential for application in high-temperature film capacitors.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarkably boosted high-temperature energy storage of a polymer dielectric induced by polymethylsesquioxane microspheres.\",\"authors\":\"Zelong Chang, Li Lei, Linwei Zhu, Yang Quan, Zengliang Ren, Yihui Qian, Davoud Dastan, Zhicheng Shi\",\"doi\":\"10.1039/d4mh01305k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymer dielectrics are the key materials in next-generation electrical power systems. However, they usually suffer from dramatic deterioration of capacitive performance at high temperatures. In this work, we demonstrate that polymethylsesquioxane (PMSQ) microspheres with a unique organic-inorganic hybrid structure can remarkably enhance the energy storage performance of a typical high-temperature dielectric polymer polyetherimide (PEI). Compared with traditional ceramic fillers, there exists -CH<sub>3</sub> on the surface of PMSQ microspheres, which results in good compatibility between PMSQ and PEI. In addition, the PMSQ microspheres with excellent insulating properties can effectively block the charge transport, yielding significantly enhanced breakdown and energy storage performance. Consequently, the PEI based composite film with 5 wt% PMSQ microspheres exhibits ultrahigh energy storage densities of 12.83 J cm<sup>-3</sup> and 9.40 J cm<sup>-3</sup> with an efficiency (<i>η</i>) above 90% at 150 °C and 200 °C, respectively, which are 10.5 and 50.5 times those of the pure PEI film. This work demonstrates that microspheres with an organic-inorganic hybrid structure are excellent candidates for enhancing the high-temperature performance of polymer dielectrics, and these PMSQ/PEI composite films have huge potential for application in high-temperature film capacitors.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01305k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01305k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物电介质是下一代电力系统的关键材料。然而,在高温条件下,它们的电容性能通常会急剧下降。在这项研究中,我们证明了具有独特有机-无机杂化结构的聚甲基醚醌(PMSQ)微球能显著提高典型高温电介质聚合物聚醚酰亚胺(PEI)的储能性能。与传统陶瓷填料相比,PMSQ 微球表面存在-CH3,这使得 PMSQ 与 PEI 具有良好的相容性。此外,PMSQ 微球还具有优异的绝缘性能,能有效阻止电荷传输,从而显著提高击穿和储能性能。因此,含有 5 wt% PMSQ 微球的 PEI 基复合薄膜在 150 °C 和 200 °C 温度下分别表现出 12.83 J cm-3 和 9.40 J cm-3 的超高储能密度,效率 (η) 超过 90%,分别是纯 PEI 薄膜的 10.5 倍和 50.5 倍。这项研究表明,具有有机-无机杂化结构的微球是提高聚合物电介质高温性能的绝佳候选材料,这些 PMSQ/PEI 复合薄膜在高温薄膜电容器中具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarkably boosted high-temperature energy storage of a polymer dielectric induced by polymethylsesquioxane microspheres.

Polymer dielectrics are the key materials in next-generation electrical power systems. However, they usually suffer from dramatic deterioration of capacitive performance at high temperatures. In this work, we demonstrate that polymethylsesquioxane (PMSQ) microspheres with a unique organic-inorganic hybrid structure can remarkably enhance the energy storage performance of a typical high-temperature dielectric polymer polyetherimide (PEI). Compared with traditional ceramic fillers, there exists -CH3 on the surface of PMSQ microspheres, which results in good compatibility between PMSQ and PEI. In addition, the PMSQ microspheres with excellent insulating properties can effectively block the charge transport, yielding significantly enhanced breakdown and energy storage performance. Consequently, the PEI based composite film with 5 wt% PMSQ microspheres exhibits ultrahigh energy storage densities of 12.83 J cm-3 and 9.40 J cm-3 with an efficiency (η) above 90% at 150 °C and 200 °C, respectively, which are 10.5 and 50.5 times those of the pure PEI film. This work demonstrates that microspheres with an organic-inorganic hybrid structure are excellent candidates for enhancing the high-temperature performance of polymer dielectrics, and these PMSQ/PEI composite films have huge potential for application in high-temperature film capacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信