通过在聚合物供体侧链中引入萘氧基,实现非卤化溶剂加工的高效三元全聚合物太阳能电池。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-11-13 Epub Date: 2024-10-29 DOI:10.1021/acsami.4c13569
Priyanka Yadav, Hyerin Kim, Thavamani Gokulnath, Jin Soo Yoo, Myeong Jin Jeon, Raja Kumaresan, Ho-Yeol Park, Sung-Ho Jin
{"title":"通过在聚合物供体侧链中引入萘氧基,实现非卤化溶剂加工的高效三元全聚合物太阳能电池。","authors":"Priyanka Yadav, Hyerin Kim, Thavamani Gokulnath, Jin Soo Yoo, Myeong Jin Jeon, Raja Kumaresan, Ho-Yeol Park, Sung-Ho Jin","doi":"10.1021/acsami.4c13569","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugated polymer donors are crucial for enhancing the power conversion efficiencies (PCEs) in all-polymer solar cells (All-PSCs) in nonhalogenated solvents. In this work, three wide-band-gap polymer donors (Sil-D1, Ph-Sil-D1, and Nap-Sil-D1) based on dithienobenzothiadiazole (DTBT) and benzodithiophene (BDT) donor moieties optimized by side chain engineering were designed and synthesized. Alkyl (Sil-D1), phenyloxy (Ph-Sil-D1), and naphthyloxy (Nap-Sil-D1) alkyl siloxane side chain units were incorporated into these polymer donors, respectively. Notably, the Nap-Sil-D1 polymer donor had a greater conjugation length, π-electron delocalization, and improved dipole moment. The deepest highest occupied molecular orbital level of Nap-Sil-D1, with a high absorption coefficient, showed better aggregation properties. In addition, reduced bimolecular recombination and trap-state density generated a high charge transfer to cause a significant enhancement of open-circuit voltage, current density, and fill factor values of 0.94 V, 25.5 mA/cm<sup>2</sup>, and 70.4%, respectively, for the Nap-Sil-D1-blended All-PSC ternary device (PM6:Nap-Sil-D1:PY-IT), with the highest PCE of 16.8% in the <i>o</i>-xylene solvent, compared to other polymers (Sil-D1 and Ph-Sil-D1) with PCEs of 15.5 and 16.2%. As a result, this optimized device architecture was found to be the most promising as a nonhalogenated solvent processed in additive-free ternary All-PSCs with good stability.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonhalogenated Solvent-Processed Efficient Ternary All-Polymer Solar Cells Enabled by the Introduction of a Naphthyloxy Group into the Side Chain of Polymer Donors.\",\"authors\":\"Priyanka Yadav, Hyerin Kim, Thavamani Gokulnath, Jin Soo Yoo, Myeong Jin Jeon, Raja Kumaresan, Ho-Yeol Park, Sung-Ho Jin\",\"doi\":\"10.1021/acsami.4c13569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conjugated polymer donors are crucial for enhancing the power conversion efficiencies (PCEs) in all-polymer solar cells (All-PSCs) in nonhalogenated solvents. In this work, three wide-band-gap polymer donors (Sil-D1, Ph-Sil-D1, and Nap-Sil-D1) based on dithienobenzothiadiazole (DTBT) and benzodithiophene (BDT) donor moieties optimized by side chain engineering were designed and synthesized. Alkyl (Sil-D1), phenyloxy (Ph-Sil-D1), and naphthyloxy (Nap-Sil-D1) alkyl siloxane side chain units were incorporated into these polymer donors, respectively. Notably, the Nap-Sil-D1 polymer donor had a greater conjugation length, π-electron delocalization, and improved dipole moment. The deepest highest occupied molecular orbital level of Nap-Sil-D1, with a high absorption coefficient, showed better aggregation properties. In addition, reduced bimolecular recombination and trap-state density generated a high charge transfer to cause a significant enhancement of open-circuit voltage, current density, and fill factor values of 0.94 V, 25.5 mA/cm<sup>2</sup>, and 70.4%, respectively, for the Nap-Sil-D1-blended All-PSC ternary device (PM6:Nap-Sil-D1:PY-IT), with the highest PCE of 16.8% in the <i>o</i>-xylene solvent, compared to other polymers (Sil-D1 and Ph-Sil-D1) with PCEs of 15.5 and 16.2%. As a result, this optimized device architecture was found to be the most promising as a nonhalogenated solvent processed in additive-free ternary All-PSCs with good stability.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c13569\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13569","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共轭聚合物供体对于提高非卤化溶剂中全聚合物太阳能电池(All-PSCs)的功率转换效率(PCEs)至关重要。在这项工作中,我们设计并合成了三种宽带隙聚合物给体(Sil-D1、Ph-Sil-D1 和 Nap-Sil-D1),它们基于通过侧链工程优化的二噻吩基苯并噻二唑(DTBT)和苯并二噻吩(BDT)给体分子。烷基(Sil-D1)、苯氧基(Ph-Sil-D1)和萘氧基(Nap-Sil-D1)烷基硅氧烷侧链单元分别被加入到这些聚合物供体中。值得注意的是,Nap-Sil-D1 聚合物供体具有更长的共轭长度、π 电子分散和更好的偶极矩。Nap-Sil-D1 最深的最高占据分子轨道水平具有较高的吸收系数,显示出更好的聚集特性。此外,双分子重组和阱态密度的降低产生了高电荷转移,使开路电压、电流密度和填充因子值显著提高,Nap-Sil-D1 的开路电压、电流密度和填充因子值分别为 0.94 V、25.5 mA/cm2 和 70.在邻二甲苯溶剂中,与其他聚合物(Sil-D1 和 Ph-Sil-D1)相比,Nap-Sil-D1-混合物 All-PSC 三元器件(PM6:Nap-Sil-D1:PY-IT)的 PCE 最高,为 16.8%,而其他聚合物(Sil-D1 和 Ph-Sil-D1)的 PCE 分别为 15.5% 和 16.2%。因此,在无添加剂的三元全聚苯乙烯多氯联苯中,这种经过优化的器件结构是最有前途的无卤溶剂加工方法,而且具有良好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonhalogenated Solvent-Processed Efficient Ternary All-Polymer Solar Cells Enabled by the Introduction of a Naphthyloxy Group into the Side Chain of Polymer Donors.

Nonhalogenated Solvent-Processed Efficient Ternary All-Polymer Solar Cells Enabled by the Introduction of a Naphthyloxy Group into the Side Chain of Polymer Donors.

Conjugated polymer donors are crucial for enhancing the power conversion efficiencies (PCEs) in all-polymer solar cells (All-PSCs) in nonhalogenated solvents. In this work, three wide-band-gap polymer donors (Sil-D1, Ph-Sil-D1, and Nap-Sil-D1) based on dithienobenzothiadiazole (DTBT) and benzodithiophene (BDT) donor moieties optimized by side chain engineering were designed and synthesized. Alkyl (Sil-D1), phenyloxy (Ph-Sil-D1), and naphthyloxy (Nap-Sil-D1) alkyl siloxane side chain units were incorporated into these polymer donors, respectively. Notably, the Nap-Sil-D1 polymer donor had a greater conjugation length, π-electron delocalization, and improved dipole moment. The deepest highest occupied molecular orbital level of Nap-Sil-D1, with a high absorption coefficient, showed better aggregation properties. In addition, reduced bimolecular recombination and trap-state density generated a high charge transfer to cause a significant enhancement of open-circuit voltage, current density, and fill factor values of 0.94 V, 25.5 mA/cm2, and 70.4%, respectively, for the Nap-Sil-D1-blended All-PSC ternary device (PM6:Nap-Sil-D1:PY-IT), with the highest PCE of 16.8% in the o-xylene solvent, compared to other polymers (Sil-D1 and Ph-Sil-D1) with PCEs of 15.5 and 16.2%. As a result, this optimized device architecture was found to be the most promising as a nonhalogenated solvent processed in additive-free ternary All-PSCs with good stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信