{"title":"用于高性能锂离子电池的聚丙烯酸聚合物粘合剂:从结构到性能","authors":"Liu Zhong, Yongrong Sun, Kuangyu Shen, Fayong Li, Hailu Liu, Luyi Sun, Dong Xie","doi":"10.1002/smll.202407297","DOIUrl":null,"url":null,"abstract":"Poly(acrylic acid) (PAA) and its derivatives have emerged as promising candidates for enhancing the electrochemical performance of lithium-ion batteries (LIBs) as binder materials. Recent research has focused on evaluating their ability to improve adhesion with silicon (Si) particles and facilitate ion transport while maintaining electrode integrity. Various strategies, including mixing modifications and copolymerization methods, are highlighted and the structural and physicochemical properties of these binders are examined. Additionally, the interaction mechanisms between PAA-based binders and active materials and their impact on key electrochemical properties such as initial Coulombic efficiency (ICE) and cycle stability are discussed. The findings underscore the efficacy of tailored PAA-based binders in enhancing the electrochemical properties of LIBs, offering insights into the design principles and practical implications for advanced battery materials. These advancements hold promise for developing high-performance lithium batteries capable of meeting future energy storage demands.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly(Acrylic Acid)-Based Polymer Binders for High-Performance Lithium-Ion Batteries: From Structure to Properties\",\"authors\":\"Liu Zhong, Yongrong Sun, Kuangyu Shen, Fayong Li, Hailu Liu, Luyi Sun, Dong Xie\",\"doi\":\"10.1002/smll.202407297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poly(acrylic acid) (PAA) and its derivatives have emerged as promising candidates for enhancing the electrochemical performance of lithium-ion batteries (LIBs) as binder materials. Recent research has focused on evaluating their ability to improve adhesion with silicon (Si) particles and facilitate ion transport while maintaining electrode integrity. Various strategies, including mixing modifications and copolymerization methods, are highlighted and the structural and physicochemical properties of these binders are examined. Additionally, the interaction mechanisms between PAA-based binders and active materials and their impact on key electrochemical properties such as initial Coulombic efficiency (ICE) and cycle stability are discussed. The findings underscore the efficacy of tailored PAA-based binders in enhancing the electrochemical properties of LIBs, offering insights into the design principles and practical implications for advanced battery materials. These advancements hold promise for developing high-performance lithium batteries capable of meeting future energy storage demands.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202407297\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407297","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Poly(Acrylic Acid)-Based Polymer Binders for High-Performance Lithium-Ion Batteries: From Structure to Properties
Poly(acrylic acid) (PAA) and its derivatives have emerged as promising candidates for enhancing the electrochemical performance of lithium-ion batteries (LIBs) as binder materials. Recent research has focused on evaluating their ability to improve adhesion with silicon (Si) particles and facilitate ion transport while maintaining electrode integrity. Various strategies, including mixing modifications and copolymerization methods, are highlighted and the structural and physicochemical properties of these binders are examined. Additionally, the interaction mechanisms between PAA-based binders and active materials and their impact on key electrochemical properties such as initial Coulombic efficiency (ICE) and cycle stability are discussed. The findings underscore the efficacy of tailored PAA-based binders in enhancing the electrochemical properties of LIBs, offering insights into the design principles and practical implications for advanced battery materials. These advancements hold promise for developing high-performance lithium batteries capable of meeting future energy storage demands.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.