{"title":"通过三蒽衍生物制成的纳米颗粒进行超亮、超快的体内余辉成像","authors":"Youjuan Wang, Jing Guo, Muchao Chen, Shiyi Liao, Li Xu, Qian Chen, Guosheng Song, Xiao-Bing Zhang","doi":"10.1038/s41551-024-01274-8","DOIUrl":null,"url":null,"abstract":"<p>Low sensitivity, photobleaching, high-power excitation and long acquisition times constrain the utility of afterglow luminescence. Here we report the design and imaging performance of nanoparticles made of electron-rich trianthracene derivatives that, on excitation by room light at ultralow power (58 μW cm<sup>–2</sup>), emit afterglow luminescence at ~500 times those of commonly used organic afterglow nanoparticles. The nanoparticles’ ultrabright afterglow allowed for deep-tissue imaging (up to 6 cm), for ultrafast afterglow imaging (at short acquisition times down to 0.01 s) of naturally behaving mice with negligible photobleaching, even after re-excitation for over 15 cycles, and for the accurate visualization of subcutaneous and orthotopic tumours and of plaque in carotid arteries. We also show that an afterglow nanoparticle that is activated only in the presence of granzyme B allowed for the tracking of granzyme-B activity in the context of therapeutic monitoring. The high sensitivity and negligible photobleaching of the organic afterglow nanoparticles offer advantages for real-time in vivo monitoring of physiopathological processes.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":26.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives\",\"authors\":\"Youjuan Wang, Jing Guo, Muchao Chen, Shiyi Liao, Li Xu, Qian Chen, Guosheng Song, Xiao-Bing Zhang\",\"doi\":\"10.1038/s41551-024-01274-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low sensitivity, photobleaching, high-power excitation and long acquisition times constrain the utility of afterglow luminescence. Here we report the design and imaging performance of nanoparticles made of electron-rich trianthracene derivatives that, on excitation by room light at ultralow power (58 μW cm<sup>–2</sup>), emit afterglow luminescence at ~500 times those of commonly used organic afterglow nanoparticles. The nanoparticles’ ultrabright afterglow allowed for deep-tissue imaging (up to 6 cm), for ultrafast afterglow imaging (at short acquisition times down to 0.01 s) of naturally behaving mice with negligible photobleaching, even after re-excitation for over 15 cycles, and for the accurate visualization of subcutaneous and orthotopic tumours and of plaque in carotid arteries. We also show that an afterglow nanoparticle that is activated only in the presence of granzyme B allowed for the tracking of granzyme-B activity in the context of therapeutic monitoring. The high sensitivity and negligible photobleaching of the organic afterglow nanoparticles offer advantages for real-time in vivo monitoring of physiopathological processes.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-024-01274-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01274-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
灵敏度低、光漂白、高功率激发和较长的采集时间限制了余辉发光的实用性。在这里,我们报告了富电子蒽衍生物纳米粒子的设计和成像性能,这种纳米粒子在超低功率(58 μW cm-2)室光激发下发出的余辉是常用有机余辉纳米粒子的约 500 倍。这种纳米粒子的超亮余辉可用于深部组织成像(长达 6 厘米)、自然行为小鼠的超快余辉成像(短至 0.01 秒的采集时间),即使在重新激发超过 15 个周期后,光漂白现象也可忽略不计,还可用于皮下肿瘤、原位肿瘤和颈动脉斑块的精确成像。我们还展示了一种仅在颗粒酶 B 存在时才被激活的余辉纳米粒子,它可以在治疗监测中跟踪颗粒酶 B 的活性。有机余辉纳米粒子的高灵敏度和可忽略不计的光漂白为实时监测体内生理病理过程提供了优势。
Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives
Low sensitivity, photobleaching, high-power excitation and long acquisition times constrain the utility of afterglow luminescence. Here we report the design and imaging performance of nanoparticles made of electron-rich trianthracene derivatives that, on excitation by room light at ultralow power (58 μW cm–2), emit afterglow luminescence at ~500 times those of commonly used organic afterglow nanoparticles. The nanoparticles’ ultrabright afterglow allowed for deep-tissue imaging (up to 6 cm), for ultrafast afterglow imaging (at short acquisition times down to 0.01 s) of naturally behaving mice with negligible photobleaching, even after re-excitation for over 15 cycles, and for the accurate visualization of subcutaneous and orthotopic tumours and of plaque in carotid arteries. We also show that an afterglow nanoparticle that is activated only in the presence of granzyme B allowed for the tracking of granzyme-B activity in the context of therapeutic monitoring. The high sensitivity and negligible photobleaching of the organic afterglow nanoparticles offer advantages for real-time in vivo monitoring of physiopathological processes.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.