通过三蒽衍生物制成的纳米颗粒进行超亮、超快的体内余辉成像

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Youjuan Wang, Jing Guo, Muchao Chen, Shiyi Liao, Li Xu, Qian Chen, Guosheng Song, Xiao-Bing Zhang
{"title":"通过三蒽衍生物制成的纳米颗粒进行超亮、超快的体内余辉成像","authors":"Youjuan Wang, Jing Guo, Muchao Chen, Shiyi Liao, Li Xu, Qian Chen, Guosheng Song, Xiao-Bing Zhang","doi":"10.1038/s41551-024-01274-8","DOIUrl":null,"url":null,"abstract":"<p>Low sensitivity, photobleaching, high-power excitation and long acquisition times constrain the utility of afterglow luminescence. Here we report the design and imaging performance of nanoparticles made of electron-rich trianthracene derivatives that, on excitation by room light at ultralow power (58 μW cm<sup>–2</sup>), emit afterglow luminescence at ~500 times those of commonly used organic afterglow nanoparticles. The nanoparticles’ ultrabright afterglow allowed for deep-tissue imaging (up to 6 cm), for ultrafast afterglow imaging (at short acquisition times down to 0.01 s) of naturally behaving mice with negligible photobleaching, even after re-excitation for over 15 cycles, and for the accurate visualization of subcutaneous and orthotopic tumours and of plaque in carotid arteries. We also show that an afterglow nanoparticle that is activated only in the presence of granzyme B allowed for the tracking of granzyme-B activity in the context of therapeutic monitoring. The high sensitivity and negligible photobleaching of the organic afterglow nanoparticles offer advantages for real-time in vivo monitoring of physiopathological processes.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":26.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives\",\"authors\":\"Youjuan Wang, Jing Guo, Muchao Chen, Shiyi Liao, Li Xu, Qian Chen, Guosheng Song, Xiao-Bing Zhang\",\"doi\":\"10.1038/s41551-024-01274-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low sensitivity, photobleaching, high-power excitation and long acquisition times constrain the utility of afterglow luminescence. Here we report the design and imaging performance of nanoparticles made of electron-rich trianthracene derivatives that, on excitation by room light at ultralow power (58 μW cm<sup>–2</sup>), emit afterglow luminescence at ~500 times those of commonly used organic afterglow nanoparticles. The nanoparticles’ ultrabright afterglow allowed for deep-tissue imaging (up to 6 cm), for ultrafast afterglow imaging (at short acquisition times down to 0.01 s) of naturally behaving mice with negligible photobleaching, even after re-excitation for over 15 cycles, and for the accurate visualization of subcutaneous and orthotopic tumours and of plaque in carotid arteries. We also show that an afterglow nanoparticle that is activated only in the presence of granzyme B allowed for the tracking of granzyme-B activity in the context of therapeutic monitoring. The high sensitivity and negligible photobleaching of the organic afterglow nanoparticles offer advantages for real-time in vivo monitoring of physiopathological processes.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-024-01274-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01274-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

灵敏度低、光漂白、高功率激发和较长的采集时间限制了余辉发光的实用性。在这里,我们报告了富电子蒽衍生物纳米粒子的设计和成像性能,这种纳米粒子在超低功率(58 μW cm-2)室光激发下发出的余辉是常用有机余辉纳米粒子的约 500 倍。这种纳米粒子的超亮余辉可用于深部组织成像(长达 6 厘米)、自然行为小鼠的超快余辉成像(短至 0.01 秒的采集时间),即使在重新激发超过 15 个周期后,光漂白现象也可忽略不计,还可用于皮下肿瘤、原位肿瘤和颈动脉斑块的精确成像。我们还展示了一种仅在颗粒酶 B 存在时才被激活的余辉纳米粒子,它可以在治疗监测中跟踪颗粒酶 B 的活性。有机余辉纳米粒子的高灵敏度和可忽略不计的光漂白为实时监测体内生理病理过程提供了优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives

Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives

Low sensitivity, photobleaching, high-power excitation and long acquisition times constrain the utility of afterglow luminescence. Here we report the design and imaging performance of nanoparticles made of electron-rich trianthracene derivatives that, on excitation by room light at ultralow power (58 μW cm–2), emit afterglow luminescence at ~500 times those of commonly used organic afterglow nanoparticles. The nanoparticles’ ultrabright afterglow allowed for deep-tissue imaging (up to 6 cm), for ultrafast afterglow imaging (at short acquisition times down to 0.01 s) of naturally behaving mice with negligible photobleaching, even after re-excitation for over 15 cycles, and for the accurate visualization of subcutaneous and orthotopic tumours and of plaque in carotid arteries. We also show that an afterglow nanoparticle that is activated only in the presence of granzyme B allowed for the tracking of granzyme-B activity in the context of therapeutic monitoring. The high sensitivity and negligible photobleaching of the organic afterglow nanoparticles offer advantages for real-time in vivo monitoring of physiopathological processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信