单离子导体凝胶聚合物电解质--用于无枝晶石锂金属电池的阴离子聚合物诱导固态电解质间相

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ping-Hui Duan, Guo-Rui Zhu, Jia-Ling Yu, Zhe Guan, You Gao, Gang Wu, Xiu-Li Wang and Yu-Zhong Wang
{"title":"单离子导体凝胶聚合物电解质--用于无枝晶石锂金属电池的阴离子聚合物诱导固态电解质间相","authors":"Ping-Hui Duan, Guo-Rui Zhu, Jia-Ling Yu, Zhe Guan, You Gao, Gang Wu, Xiu-Li Wang and Yu-Zhong Wang","doi":"10.1039/D4TA06792D","DOIUrl":null,"url":null,"abstract":"<p >Lithium-metal batteries (LMBs) are considered some of the most promising candidates for future energy storage devices. However, the unstable electrolyte–electrode interface and the rapid lithium dendrite growth in LMBs hinder their practical application. Here, we report a three-dimensional (3D) crosslinked single-ion gel polymer electrolyte (SIGPE) with a high lithium-ion transference number and favorable interface to suppress lithium dendrite growth. The SIGPE is synthesized through a weakly interacting anion and coordinating ether oxygen segments. Molecular dynamics simulations reveal a solvated sheath-like structure [Li<small><sup>+</sup></small>–anionic polymer] is formed in the SIGPE, and density functional theory calculations show strong interactions between Li<small><sup>+</sup></small> and anionic polymers, which allows the construction of a robust flexible electrolyte–electrode interface through anionic polymer segments. As a result, the Li‖Li symmetric cell with the SIGPE exhibits a stable overpotential after 700 h, indicating an effective suppression of lithium dendrite growth and good interfacial compatibility with the lithium anode. Notably, the as-assembled Li‖LiFePO<small><sub>4</sub></small> cell shows prominent cycle stability and coulombic efficiency over 300 cycles at room temperature, demonstrating the significant potential of the SIGPE in lithium metal batteries.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 13","pages":" 9111-9119"},"PeriodicalIF":9.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-ion conductor gel polymer electrolytes enabling an anionic polymer-induced solid electrolyte interphase for dendrite-free lithium-metal batteries†\",\"authors\":\"Ping-Hui Duan, Guo-Rui Zhu, Jia-Ling Yu, Zhe Guan, You Gao, Gang Wu, Xiu-Li Wang and Yu-Zhong Wang\",\"doi\":\"10.1039/D4TA06792D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium-metal batteries (LMBs) are considered some of the most promising candidates for future energy storage devices. However, the unstable electrolyte–electrode interface and the rapid lithium dendrite growth in LMBs hinder their practical application. Here, we report a three-dimensional (3D) crosslinked single-ion gel polymer electrolyte (SIGPE) with a high lithium-ion transference number and favorable interface to suppress lithium dendrite growth. The SIGPE is synthesized through a weakly interacting anion and coordinating ether oxygen segments. Molecular dynamics simulations reveal a solvated sheath-like structure [Li<small><sup>+</sup></small>–anionic polymer] is formed in the SIGPE, and density functional theory calculations show strong interactions between Li<small><sup>+</sup></small> and anionic polymers, which allows the construction of a robust flexible electrolyte–electrode interface through anionic polymer segments. As a result, the Li‖Li symmetric cell with the SIGPE exhibits a stable overpotential after 700 h, indicating an effective suppression of lithium dendrite growth and good interfacial compatibility with the lithium anode. Notably, the as-assembled Li‖LiFePO<small><sub>4</sub></small> cell shows prominent cycle stability and coulombic efficiency over 300 cycles at room temperature, demonstrating the significant potential of the SIGPE in lithium metal batteries.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 13\",\"pages\":\" 9111-9119\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta06792d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta06792d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池(LMB)被认为是未来最有前途的储能设备之一。然而,LMB 中不稳定的电解质-电极界面和快速的锂枝晶生长阻碍了其实际应用。在此,我们报告了一种三维(3D)交联单离子凝胶聚合物(SIGPE),它具有较高的锂离子传输数和抑制锂枝晶生长的有利界面。SIGPE 是通过弱相互作用阴离子和配位醚氧段合成的。分子动力学模拟显示,SIGPE 中形成了一种溶解的鞘状结构 [Li+- 阴离子聚合物],密度泛函理论计算显示 Li+ 与阴离子聚合物之间具有很强的相互作用,因此可以通过阴离子聚合物段构建一个坚固灵活的电解质-电极界面。因此,使用 SIGPE 的锂||锂对称电池在 700 小时后表现出稳定的过电位,这表明它有效抑制了锂枝晶的生长,并与锂阳极具有良好的界面兼容性。值得注意的是,组装后的 Li||LiFePO4 电池在室温下循环 300 次以上,显示出突出的循环稳定性和库仑效率,证明了 SIGPE 在锂金属电池中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-ion conductor gel polymer electrolytes enabling an anionic polymer-induced solid electrolyte interphase for dendrite-free lithium-metal batteries†

Single-ion conductor gel polymer electrolytes enabling an anionic polymer-induced solid electrolyte interphase for dendrite-free lithium-metal batteries†

Lithium-metal batteries (LMBs) are considered some of the most promising candidates for future energy storage devices. However, the unstable electrolyte–electrode interface and the rapid lithium dendrite growth in LMBs hinder their practical application. Here, we report a three-dimensional (3D) crosslinked single-ion gel polymer electrolyte (SIGPE) with a high lithium-ion transference number and favorable interface to suppress lithium dendrite growth. The SIGPE is synthesized through a weakly interacting anion and coordinating ether oxygen segments. Molecular dynamics simulations reveal a solvated sheath-like structure [Li+–anionic polymer] is formed in the SIGPE, and density functional theory calculations show strong interactions between Li+ and anionic polymers, which allows the construction of a robust flexible electrolyte–electrode interface through anionic polymer segments. As a result, the Li‖Li symmetric cell with the SIGPE exhibits a stable overpotential after 700 h, indicating an effective suppression of lithium dendrite growth and good interfacial compatibility with the lithium anode. Notably, the as-assembled Li‖LiFePO4 cell shows prominent cycle stability and coulombic efficiency over 300 cycles at room temperature, demonstrating the significant potential of the SIGPE in lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信