{"title":"具有咪唑啉羰基的双配位共价金属配合物:为有机发光二极管(OLED)实现高效蓝色热激活延迟荧光(TADF)","authors":"Li-Ping Bai, Shu-Jia Zheng, Rui Xue, Deng-Feng Li, Ke-Die Li, Si-Qi Yu, Yuan Liu, Tian-Yi Li","doi":"10.1021/acs.chemmater.4c02517","DOIUrl":null,"url":null,"abstract":"As the most readily accessible <i>N</i>-heterocyclic carbenes (NHCs), imidazolium carbenes have traditionally been ruled out for the design of TADF coinage metal carbene–metal–amine (<b>CMA</b>) complexes due to their high-lying unoccupied π orbitals, which lead to a dark interligand charge transfer (ICT) state. In this work, in cooperation with strong electron-donating acridine ligands, a series of <b>CMA</b> complexes featuring imidazolium carbenes are prepared, exhibiting desired blue thermally activated delayed fluorescence (TADF) with high photoluminescent (PL) quantum yields (Φ<sub>PL</sub>) close to unity and emission decay lifetimes as short as 1.0 μs. The small energy differences between S<sub>1</sub> and T<sub>1</sub> (Δ<i>E</i><sub>ST</sub>) of around 100 meV and the high radiative decay rates of S<sub>1</sub> on the order of 1 × 10<sup>7</sup>–10<sup>8</sup> s<sup>–1</sup> contribute to the decent TADF behavior. Solution-processed blue OLEDs based on the Cu(I) emitter show an external quantum efficiency (EQE) exceeding 8.0%, demonstrating the practicality of using imidazolium carbenes in the design of TADF <b>CMA</b> luminophores.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"13 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Coordinate Coinage Metal Complexes Featuring Imidazolium Carbenes: Realization of Efficient Blue Thermally Activated Delayed Fluorescence (TADF) for Organic-Light-Emitting Diodes (OLEDs)\",\"authors\":\"Li-Ping Bai, Shu-Jia Zheng, Rui Xue, Deng-Feng Li, Ke-Die Li, Si-Qi Yu, Yuan Liu, Tian-Yi Li\",\"doi\":\"10.1021/acs.chemmater.4c02517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the most readily accessible <i>N</i>-heterocyclic carbenes (NHCs), imidazolium carbenes have traditionally been ruled out for the design of TADF coinage metal carbene–metal–amine (<b>CMA</b>) complexes due to their high-lying unoccupied π orbitals, which lead to a dark interligand charge transfer (ICT) state. In this work, in cooperation with strong electron-donating acridine ligands, a series of <b>CMA</b> complexes featuring imidazolium carbenes are prepared, exhibiting desired blue thermally activated delayed fluorescence (TADF) with high photoluminescent (PL) quantum yields (Φ<sub>PL</sub>) close to unity and emission decay lifetimes as short as 1.0 μs. The small energy differences between S<sub>1</sub> and T<sub>1</sub> (Δ<i>E</i><sub>ST</sub>) of around 100 meV and the high radiative decay rates of S<sub>1</sub> on the order of 1 × 10<sup>7</sup>–10<sup>8</sup> s<sup>–1</sup> contribute to the decent TADF behavior. Solution-processed blue OLEDs based on the Cu(I) emitter show an external quantum efficiency (EQE) exceeding 8.0%, demonstrating the practicality of using imidazolium carbenes in the design of TADF <b>CMA</b> luminophores.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02517\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02517","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Two-Coordinate Coinage Metal Complexes Featuring Imidazolium Carbenes: Realization of Efficient Blue Thermally Activated Delayed Fluorescence (TADF) for Organic-Light-Emitting Diodes (OLEDs)
As the most readily accessible N-heterocyclic carbenes (NHCs), imidazolium carbenes have traditionally been ruled out for the design of TADF coinage metal carbene–metal–amine (CMA) complexes due to their high-lying unoccupied π orbitals, which lead to a dark interligand charge transfer (ICT) state. In this work, in cooperation with strong electron-donating acridine ligands, a series of CMA complexes featuring imidazolium carbenes are prepared, exhibiting desired blue thermally activated delayed fluorescence (TADF) with high photoluminescent (PL) quantum yields (ΦPL) close to unity and emission decay lifetimes as short as 1.0 μs. The small energy differences between S1 and T1 (ΔEST) of around 100 meV and the high radiative decay rates of S1 on the order of 1 × 107–108 s–1 contribute to the decent TADF behavior. Solution-processed blue OLEDs based on the Cu(I) emitter show an external quantum efficiency (EQE) exceeding 8.0%, demonstrating the practicality of using imidazolium carbenes in the design of TADF CMA luminophores.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.