通过时间反转对称量化的非赫米极化

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jing Cheng, Jinbing Hu, Zhigao Hu, Lin Chen, Minghui Lu, Songlin Zhuang
{"title":"通过时间反转对称量化的非赫米极化","authors":"Jing Cheng,&nbsp;Jinbing Hu,&nbsp;Zhigao Hu,&nbsp;Lin Chen,&nbsp;Minghui Lu,&nbsp;Songlin Zhuang","doi":"10.1007/s11433-024-2484-0","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that in one-dimensional (1D) crystalline insulators, the electric polarization is a manifestation of Berry phase, which can not be quantized by time-reversal symmetry (TRS) as in Hermitian physics TRS does not induce any topological phase in one dimension. In this paper we report that even though associated with complex eigenenergies a 1D non-Hermitian insulator obeying only TRS is capable of presenting quantized bulk polarization. The underlying physical reason is unveiled: TRS guarantees the complex energies to come in pair (<i>E, E*</i>), and the corresponding decaying and amplifying wave functions also come in pair and have the same variation rate, hence, giving rise to a stable wannier center. The electron transport is performed by means of charge pumping process, which verifies the physical mechanism above. At last, we discuss the possible experimental implementation of the proposed model by means of twisted-<i>π</i> gauge flux.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"67 12","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Hermitian polarization quantized by time-reversal symmetry\",\"authors\":\"Jing Cheng,&nbsp;Jinbing Hu,&nbsp;Zhigao Hu,&nbsp;Lin Chen,&nbsp;Minghui Lu,&nbsp;Songlin Zhuang\",\"doi\":\"10.1007/s11433-024-2484-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well known that in one-dimensional (1D) crystalline insulators, the electric polarization is a manifestation of Berry phase, which can not be quantized by time-reversal symmetry (TRS) as in Hermitian physics TRS does not induce any topological phase in one dimension. In this paper we report that even though associated with complex eigenenergies a 1D non-Hermitian insulator obeying only TRS is capable of presenting quantized bulk polarization. The underlying physical reason is unveiled: TRS guarantees the complex energies to come in pair (<i>E, E*</i>), and the corresponding decaying and amplifying wave functions also come in pair and have the same variation rate, hence, giving rise to a stable wannier center. The electron transport is performed by means of charge pumping process, which verifies the physical mechanism above. At last, we discuss the possible experimental implementation of the proposed model by means of twisted-<i>π</i> gauge flux.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"67 12\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2484-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2484-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在一维(1D)晶体绝缘体中,电极化是贝里相的一种表现形式,它不能通过时间反转对称(TRS)来量化,因为在赫米特物理学中,TRS 不会在一维中引起任何拓扑相。在这篇论文中,我们报告说,即使与复特征能相关联,仅服从 TRS 的一维非赫米提绝缘体也能呈现量子化的体极化。本文揭示了其中的物理原因:TRS 保证了复能成对(E, E*),相应的衰减和放大波函数也成对并具有相同的变化率,因此产生了稳定的万年中心。电子传输是通过电荷泵过程实现的,这验证了上述物理机制。最后,我们讨论了通过扭曲π规通量对所提模型进行实验实现的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Hermitian polarization quantized by time-reversal symmetry

It is well known that in one-dimensional (1D) crystalline insulators, the electric polarization is a manifestation of Berry phase, which can not be quantized by time-reversal symmetry (TRS) as in Hermitian physics TRS does not induce any topological phase in one dimension. In this paper we report that even though associated with complex eigenenergies a 1D non-Hermitian insulator obeying only TRS is capable of presenting quantized bulk polarization. The underlying physical reason is unveiled: TRS guarantees the complex energies to come in pair (E, E*), and the corresponding decaying and amplifying wave functions also come in pair and have the same variation rate, hence, giving rise to a stable wannier center. The electron transport is performed by means of charge pumping process, which verifies the physical mechanism above. At last, we discuss the possible experimental implementation of the proposed model by means of twisted-π gauge flux.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信