{"title":"通过参数槽重塑 1.5 级轴流式涡轮机的转子毂以减少压力损失","authors":"Hayder M. B. Obaida, Aldo Rona","doi":"10.1134/S0040601524700356","DOIUrl":null,"url":null,"abstract":"<p>The interaction among the vortices that develop over an axial turbine passage hub leads to pressure losses and, consequently, to a decrease in the stage isentropic efficiency. The turbine performs better if flow separation and secondary flows are reduced. To achieve this, this paper explores by computational fluid dynamics the application of rotor hub contouring to a one-and-a-half-stage axial turbine, the “Aachen Turbine.” The pressure side arm of the rotor horseshoe vortex is guided by a groove in the end-wall rotor hub surface, which is defined parametrically using non-uniform rational B-splines (NURBS). This novel rotor hub groove runs from the leading edge of the rotor blade to the trilling edge of the rotor blade. A three-dimensional steady Reynolds Averaged Navier–Stokes (RANS) <i>k</i>–ω-SST model of the one-and-half-stage turbine with axisymmetric end-walls is validated against reference experimental measurement from the Institute of Jet Propulsion and Turbomachinery at RWTH Aachen in Germany. By contouring the hub of the upstream stator and of the rotor, the overall pressure loss coefficient predicted by openFOAM computational fluid dynamics is reduced by 5.2%, using Kriging optimized groove shape parameters.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 10","pages":"828 - 839"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reshaping the Rotor Hub of a 1.5-stage Axial Turbine to Reduce Pressure Losses by a Parametric Groove\",\"authors\":\"Hayder M. B. Obaida, Aldo Rona\",\"doi\":\"10.1134/S0040601524700356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The interaction among the vortices that develop over an axial turbine passage hub leads to pressure losses and, consequently, to a decrease in the stage isentropic efficiency. The turbine performs better if flow separation and secondary flows are reduced. To achieve this, this paper explores by computational fluid dynamics the application of rotor hub contouring to a one-and-a-half-stage axial turbine, the “Aachen Turbine.” The pressure side arm of the rotor horseshoe vortex is guided by a groove in the end-wall rotor hub surface, which is defined parametrically using non-uniform rational B-splines (NURBS). This novel rotor hub groove runs from the leading edge of the rotor blade to the trilling edge of the rotor blade. A three-dimensional steady Reynolds Averaged Navier–Stokes (RANS) <i>k</i>–ω-SST model of the one-and-half-stage turbine with axisymmetric end-walls is validated against reference experimental measurement from the Institute of Jet Propulsion and Turbomachinery at RWTH Aachen in Germany. By contouring the hub of the upstream stator and of the rotor, the overall pressure loss coefficient predicted by openFOAM computational fluid dynamics is reduced by 5.2%, using Kriging optimized groove shape parameters.</p>\",\"PeriodicalId\":799,\"journal\":{\"name\":\"Thermal Engineering\",\"volume\":\"71 10\",\"pages\":\"828 - 839\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040601524700356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
在轴流式涡轮机轮毂上形成的涡流之间的相互作用会导致压力损失,进而降低级等熵效率。如果能减少流体分离和二次流,涡轮机的性能就会更好。为了实现这一目标,本文通过计算流体动力学探讨了转子轮毂轮廓在单级半轴流式涡轮机 "亚琛涡轮机 "中的应用。转子马蹄涡旋的压力侧臂由转子轮毂端壁表面的凹槽引导,凹槽采用非均匀有理 B 样条(NURBS)参数定义。这种新颖的转子轮毂凹槽从转子叶片的前缘一直延伸到转子叶片的后缘。根据德国亚琛工业大学喷气推进和透平机械研究所的参考实验测量结果,对带有轴对称端壁的一级半涡轮机的三维稳定雷诺平均纳维-斯托克斯(RANS)k-ω-SST 模型进行了验证。通过对上游定子和转子的轮毂进行轮廓处理,使用克里金优化槽形参数,openFOAM 计算流体动力学预测的整体压力损失系数降低了 5.2%。
Reshaping the Rotor Hub of a 1.5-stage Axial Turbine to Reduce Pressure Losses by a Parametric Groove
The interaction among the vortices that develop over an axial turbine passage hub leads to pressure losses and, consequently, to a decrease in the stage isentropic efficiency. The turbine performs better if flow separation and secondary flows are reduced. To achieve this, this paper explores by computational fluid dynamics the application of rotor hub contouring to a one-and-a-half-stage axial turbine, the “Aachen Turbine.” The pressure side arm of the rotor horseshoe vortex is guided by a groove in the end-wall rotor hub surface, which is defined parametrically using non-uniform rational B-splines (NURBS). This novel rotor hub groove runs from the leading edge of the rotor blade to the trilling edge of the rotor blade. A three-dimensional steady Reynolds Averaged Navier–Stokes (RANS) k–ω-SST model of the one-and-half-stage turbine with axisymmetric end-walls is validated against reference experimental measurement from the Institute of Jet Propulsion and Turbomachinery at RWTH Aachen in Germany. By contouring the hub of the upstream stator and of the rotor, the overall pressure loss coefficient predicted by openFOAM computational fluid dynamics is reduced by 5.2%, using Kriging optimized groove shape parameters.