可变莫里空间中的哈代算子

IF 0.7 Q2 MATHEMATICS
Humberto Rafeiro, Stefan Samko
{"title":"可变莫里空间中的哈代算子","authors":"Humberto Rafeiro,&nbsp;Stefan Samko","doi":"10.1007/s43036-024-00382-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the boundedness of multidimensional Hardy operators over <span>\\(\\textbf{R}^n\\)</span> in the framework of variable generalised local and global Morrey spaces with power-type weights, where we admit variable exponents for weights. We find conditions on the domain and target spaces ensuring such boundedness. In case of local spaces, these conditions involved values of variable integrability exponents of the domain and target spaces only at the origin and infinity. Due to the variability of the exponents of weights, the obtained results proved to be different corresponding to two distinct cases, which we called <i>up to borderline</i> and <i>overbordeline case</i>. We also pay special attention to a particular case, when the variable domain and target Morrey spaces are related to each other by Adams-type condition. The proofs are based on certain point-wise estimates for the Hardy operators, which allow, in particular, to get a statement on the boundedness from a local Morrey space to an arbitrary Banach function space with lattice property.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardy operators in variable Morrey spaces\",\"authors\":\"Humberto Rafeiro,&nbsp;Stefan Samko\",\"doi\":\"10.1007/s43036-024-00382-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the boundedness of multidimensional Hardy operators over <span>\\\\(\\\\textbf{R}^n\\\\)</span> in the framework of variable generalised local and global Morrey spaces with power-type weights, where we admit variable exponents for weights. We find conditions on the domain and target spaces ensuring such boundedness. In case of local spaces, these conditions involved values of variable integrability exponents of the domain and target spaces only at the origin and infinity. Due to the variability of the exponents of weights, the obtained results proved to be different corresponding to two distinct cases, which we called <i>up to borderline</i> and <i>overbordeline case</i>. We also pay special attention to a particular case, when the variable domain and target Morrey spaces are related to each other by Adams-type condition. The proofs are based on certain point-wise estimates for the Hardy operators, which allow, in particular, to get a statement on the boundedness from a local Morrey space to an arbitrary Banach function space with lattice property.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00382-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00382-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在带有幂型权重的可变广义局部和全局莫雷空间的框架内研究了 \(\textbf{R}^n\) 上多维哈代算子的有界性,其中我们允许权重有可变指数。我们找到了确保这种有界性的域空间和目标空间的条件。对于局部空间,这些条件涉及域和目标空间的可变积分指数值,但只在原点和无穷远处。由于权重指数的可变性,得到的结果被证明是不同的,对应于两种不同的情况,我们称之为边界线和超边界线情况。我们还特别关注了一种特殊情况,即变量域和目标 Morrey 空间通过亚当斯类型条件相互关联。证明是基于哈代算子的某些点向估计,它特别允许得到关于从局部莫雷空间到具有晶格性质的任意巴拿赫函数空间的有界性的声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardy operators in variable Morrey spaces

We study the boundedness of multidimensional Hardy operators over \(\textbf{R}^n\) in the framework of variable generalised local and global Morrey spaces with power-type weights, where we admit variable exponents for weights. We find conditions on the domain and target spaces ensuring such boundedness. In case of local spaces, these conditions involved values of variable integrability exponents of the domain and target spaces only at the origin and infinity. Due to the variability of the exponents of weights, the obtained results proved to be different corresponding to two distinct cases, which we called up to borderline and overbordeline case. We also pay special attention to a particular case, when the variable domain and target Morrey spaces are related to each other by Adams-type condition. The proofs are based on certain point-wise estimates for the Hardy operators, which allow, in particular, to get a statement on the boundedness from a local Morrey space to an arbitrary Banach function space with lattice property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信