Renbo Wei, Qi Huo, Kexin Liu, Ashraf Y. Elnaggar, Salah M. El-Bahy, Zeinhom M. El-Bahy, Juanna Ren, Lingling Wang, Zijian Wu
{"title":"在聚芳醚腈多孔薄膜的孔壁上分布氟化碳纳米管,用于高级电磁干扰屏蔽","authors":"Renbo Wei, Qi Huo, Kexin Liu, Ashraf Y. Elnaggar, Salah M. El-Bahy, Zeinhom M. El-Bahy, Juanna Ren, Lingling Wang, Zijian Wu","doi":"10.1007/s42114-024-00998-0","DOIUrl":null,"url":null,"abstract":"<div><p>With the burgeoning application of diverse electronic equipment in daily life and national defense, the requirements for electromagnetic interference shielding effectiveness (EMISE) are constantly increasing. The precise adjustment of pore structure and the controllable distribution of conductive fillers in pores have become key challenges in optimizing EMISE of porous materials. Herein, we fabricated fluorinated carbon nanotube (FCNT) and polyarylene ether nitrile (PEN) FCNT/PEN composites with advanced EMISE by precisely controlling the pore structure of PEN porous films via delayed phase conversion (DPC) method and distributing FCNT on the obtained pore walls. Dispersion and electronegativity of carbon nanotube are firstly modified by fluorination treatment, offering FCNT. The pore structures of PEN porous films with enriched FCNT on their pore walls are adjusted by changing constitution of coagulation bath and amount of porogen PVP K30. Benefiting from the separated pore structure and continuous conducting network of FCNT inside the pore, these porous films exhibit up to 27.3 dB absorption dominated EMISE with a low conductivity of 0.06 S/m. Further continuous hot pressing on these porous films results in thinner and denser films whose specific EMISE reaches an astonishing value of 6794.9 dB/cm. This in situ self-assembly of FCNT during the DPC process achieving the directional distribution of fillers in the prepared porous films initiates a novel approach for fabricating materials with advanced EMISE.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributing fluorinated carbon nanotube on pore walls of polyarylene ether nitrile porous films for advanced electromagnetic interference shielding\",\"authors\":\"Renbo Wei, Qi Huo, Kexin Liu, Ashraf Y. Elnaggar, Salah M. El-Bahy, Zeinhom M. El-Bahy, Juanna Ren, Lingling Wang, Zijian Wu\",\"doi\":\"10.1007/s42114-024-00998-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the burgeoning application of diverse electronic equipment in daily life and national defense, the requirements for electromagnetic interference shielding effectiveness (EMISE) are constantly increasing. The precise adjustment of pore structure and the controllable distribution of conductive fillers in pores have become key challenges in optimizing EMISE of porous materials. Herein, we fabricated fluorinated carbon nanotube (FCNT) and polyarylene ether nitrile (PEN) FCNT/PEN composites with advanced EMISE by precisely controlling the pore structure of PEN porous films via delayed phase conversion (DPC) method and distributing FCNT on the obtained pore walls. Dispersion and electronegativity of carbon nanotube are firstly modified by fluorination treatment, offering FCNT. The pore structures of PEN porous films with enriched FCNT on their pore walls are adjusted by changing constitution of coagulation bath and amount of porogen PVP K30. Benefiting from the separated pore structure and continuous conducting network of FCNT inside the pore, these porous films exhibit up to 27.3 dB absorption dominated EMISE with a low conductivity of 0.06 S/m. Further continuous hot pressing on these porous films results in thinner and denser films whose specific EMISE reaches an astonishing value of 6794.9 dB/cm. This in situ self-assembly of FCNT during the DPC process achieving the directional distribution of fillers in the prepared porous films initiates a novel approach for fabricating materials with advanced EMISE.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00998-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00998-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Distributing fluorinated carbon nanotube on pore walls of polyarylene ether nitrile porous films for advanced electromagnetic interference shielding
With the burgeoning application of diverse electronic equipment in daily life and national defense, the requirements for electromagnetic interference shielding effectiveness (EMISE) are constantly increasing. The precise adjustment of pore structure and the controllable distribution of conductive fillers in pores have become key challenges in optimizing EMISE of porous materials. Herein, we fabricated fluorinated carbon nanotube (FCNT) and polyarylene ether nitrile (PEN) FCNT/PEN composites with advanced EMISE by precisely controlling the pore structure of PEN porous films via delayed phase conversion (DPC) method and distributing FCNT on the obtained pore walls. Dispersion and electronegativity of carbon nanotube are firstly modified by fluorination treatment, offering FCNT. The pore structures of PEN porous films with enriched FCNT on their pore walls are adjusted by changing constitution of coagulation bath and amount of porogen PVP K30. Benefiting from the separated pore structure and continuous conducting network of FCNT inside the pore, these porous films exhibit up to 27.3 dB absorption dominated EMISE with a low conductivity of 0.06 S/m. Further continuous hot pressing on these porous films results in thinner and denser films whose specific EMISE reaches an astonishing value of 6794.9 dB/cm. This in situ self-assembly of FCNT during the DPC process achieving the directional distribution of fillers in the prepared porous films initiates a novel approach for fabricating materials with advanced EMISE.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.