Siyu Chen, Ruifeng Li, Hongxiang Hu, Jingdong Guo, Song Wei, Wangyun Li
{"title":"利用液态金属二相结构改善热界面材料的热学、机械和绝缘特性","authors":"Siyu Chen, Ruifeng Li, Hongxiang Hu, Jingdong Guo, Song Wei, Wangyun Li","doi":"10.1007/s10853-024-10176-8","DOIUrl":null,"url":null,"abstract":"<div><p>Gallium-based liquid metal has significant research value in interfacial heat transfer due to high its thermal conductivity. However, its great fluidity frequently causes the risk of leakage and corrosion when in direct contact with heat sinks. In this paper, a high-performance thermal pad with diphase continuous structure reinforced by liquid metal is proposed. Nickel-coated copper particles connected by liquid metal ensure heat-transfer performance, while silicone rubber provides softness and strength. Utilizing the remarkable processability and insulation properties of conventional polymers, they function as a barrier layer to avoid liquid metal from overflowing. The findings indicate that the composite exhibits favorable insulation performance, mechanical characteristics, and a thermal conductivity of up to 12.41 W/(m K). Most notably, the problem of liquid metal overflow has been effectively resolved, rendering it highly applicable in the field of thermal management within the electronics industry.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 40","pages":"19125 - 19137"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the thermal, mechanical, and insulating characteristics of thermal interface materials with liquid metal-based diphase structure\",\"authors\":\"Siyu Chen, Ruifeng Li, Hongxiang Hu, Jingdong Guo, Song Wei, Wangyun Li\",\"doi\":\"10.1007/s10853-024-10176-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gallium-based liquid metal has significant research value in interfacial heat transfer due to high its thermal conductivity. However, its great fluidity frequently causes the risk of leakage and corrosion when in direct contact with heat sinks. In this paper, a high-performance thermal pad with diphase continuous structure reinforced by liquid metal is proposed. Nickel-coated copper particles connected by liquid metal ensure heat-transfer performance, while silicone rubber provides softness and strength. Utilizing the remarkable processability and insulation properties of conventional polymers, they function as a barrier layer to avoid liquid metal from overflowing. The findings indicate that the composite exhibits favorable insulation performance, mechanical characteristics, and a thermal conductivity of up to 12.41 W/(m K). Most notably, the problem of liquid metal overflow has been effectively resolved, rendering it highly applicable in the field of thermal management within the electronics industry.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 40\",\"pages\":\"19125 - 19137\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10176-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10176-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving the thermal, mechanical, and insulating characteristics of thermal interface materials with liquid metal-based diphase structure
Gallium-based liquid metal has significant research value in interfacial heat transfer due to high its thermal conductivity. However, its great fluidity frequently causes the risk of leakage and corrosion when in direct contact with heat sinks. In this paper, a high-performance thermal pad with diphase continuous structure reinforced by liquid metal is proposed. Nickel-coated copper particles connected by liquid metal ensure heat-transfer performance, while silicone rubber provides softness and strength. Utilizing the remarkable processability and insulation properties of conventional polymers, they function as a barrier layer to avoid liquid metal from overflowing. The findings indicate that the composite exhibits favorable insulation performance, mechanical characteristics, and a thermal conductivity of up to 12.41 W/(m K). Most notably, the problem of liquid metal overflow has been effectively resolved, rendering it highly applicable in the field of thermal management within the electronics industry.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.