基于多向巴尔豪森噪声测量的自校准应力测量系统

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Leszek Piotrowski, Marek Chmielewski
{"title":"基于多向巴尔豪森噪声测量的自校准应力测量系统","authors":"Leszek Piotrowski,&nbsp;Marek Chmielewski","doi":"10.1007/s10921-024-01137-x","DOIUrl":null,"url":null,"abstract":"<div><p>The system presented in this paper enables automatization of the two-dimensional calibration process (determination of Barkhausen noise (BN) intensity dependence on in-plane components of strain). Then, using dedicated software created by the authors in LabVIEW environment, and with the help of two dimensional calibration data one can effectively determine strain and stress distribution i.e. magnitude and orientation of main strain/stress components relative to measurement direction. BN signal measurements are performed using an advanced, multidirectional Barkhausen noise (BN) measuring sensor and a measurement system dedicated for cooperation with it. The system uses a robust algorithm for the strain components determination based on calibration surfaces, instead of usually applied curves, thus taking the influence of normal strain component directly into account instead of treating it as a correction factor (if not completely neglecting). The originality of the system arises also from the fact that this is the first BN measurement system that is self-calibrating (i.e. automatically loads the calibration sample in a pre-programmed way, performs BN signal measurements and calculates calibration planes), provided that the user possesses enough of the investigated material for calibration sample preparation.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-024-01137-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Self-Calibrating Stress Measurement System Based on Multidirectional Barkhausen Noise Measurements\",\"authors\":\"Leszek Piotrowski,&nbsp;Marek Chmielewski\",\"doi\":\"10.1007/s10921-024-01137-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The system presented in this paper enables automatization of the two-dimensional calibration process (determination of Barkhausen noise (BN) intensity dependence on in-plane components of strain). Then, using dedicated software created by the authors in LabVIEW environment, and with the help of two dimensional calibration data one can effectively determine strain and stress distribution i.e. magnitude and orientation of main strain/stress components relative to measurement direction. BN signal measurements are performed using an advanced, multidirectional Barkhausen noise (BN) measuring sensor and a measurement system dedicated for cooperation with it. The system uses a robust algorithm for the strain components determination based on calibration surfaces, instead of usually applied curves, thus taking the influence of normal strain component directly into account instead of treating it as a correction factor (if not completely neglecting). The originality of the system arises also from the fact that this is the first BN measurement system that is self-calibrating (i.e. automatically loads the calibration sample in a pre-programmed way, performs BN signal measurements and calculates calibration planes), provided that the user possesses enough of the investigated material for calibration sample preparation.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10921-024-01137-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01137-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01137-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍的系统可实现二维校准过程的自动化(确定巴克豪森噪声 (BN) 强度与应变面内分量的关系)。然后,使用作者在 LabVIEW 环境中创建的专用软件,并在二维校准数据的帮助下,可以有效地确定应变和应力分布,即相对于测量方向的主要应变/应力分量的大小和方向。BN 信号测量使用先进的多方向巴尔豪森噪声(BN)测量传感器和专用测量系统进行。该系统使用一种基于校准面而不是通常应用的曲线的稳健算法来确定应变分量,从而直接考虑到法向应变分量的影响,而不是将其作为校正因子(即使不是完全忽略)。该系统的独创性还在于,它是首个可进行自我校准的 BN 测量系统(即以预先编程的方式自动加载校准样品,执行 BN 信号测量并计算校准平面),前提是用户拥有足够的被测材料用于校准样品制备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Calibrating Stress Measurement System Based on Multidirectional Barkhausen Noise Measurements

The system presented in this paper enables automatization of the two-dimensional calibration process (determination of Barkhausen noise (BN) intensity dependence on in-plane components of strain). Then, using dedicated software created by the authors in LabVIEW environment, and with the help of two dimensional calibration data one can effectively determine strain and stress distribution i.e. magnitude and orientation of main strain/stress components relative to measurement direction. BN signal measurements are performed using an advanced, multidirectional Barkhausen noise (BN) measuring sensor and a measurement system dedicated for cooperation with it. The system uses a robust algorithm for the strain components determination based on calibration surfaces, instead of usually applied curves, thus taking the influence of normal strain component directly into account instead of treating it as a correction factor (if not completely neglecting). The originality of the system arises also from the fact that this is the first BN measurement system that is self-calibrating (i.e. automatically loads the calibration sample in a pre-programmed way, performs BN signal measurements and calculates calibration planes), provided that the user possesses enough of the investigated material for calibration sample preparation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信