{"title":"用钪合金化工业铝合金","authors":"V. V. Zakharov","doi":"10.1007/s11041-024-01056-8","DOIUrl":null,"url":null,"abstract":"<p>Use of scandium as an alloying element in aluminum alloys is considered. The choice of component systems (alloys) that it is expedient to alloy with scandium to improve the properties of semi-finished products is substantiated. It is shown that alloying aluminum alloys with scandium to improve their mechanical properties may be effective if certain rules for choosing the chemical composition and temperature-time production parameters are observed during preparation of deformed semi-finished products.</p>","PeriodicalId":701,"journal":{"name":"Metal Science and Heat Treatment","volume":"66 5-6","pages":"338 - 342"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alloying of Industrial Aluminum Alloys with Scandium\",\"authors\":\"V. V. Zakharov\",\"doi\":\"10.1007/s11041-024-01056-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Use of scandium as an alloying element in aluminum alloys is considered. The choice of component systems (alloys) that it is expedient to alloy with scandium to improve the properties of semi-finished products is substantiated. It is shown that alloying aluminum alloys with scandium to improve their mechanical properties may be effective if certain rules for choosing the chemical composition and temperature-time production parameters are observed during preparation of deformed semi-finished products.</p>\",\"PeriodicalId\":701,\"journal\":{\"name\":\"Metal Science and Heat Treatment\",\"volume\":\"66 5-6\",\"pages\":\"338 - 342\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal Science and Heat Treatment\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11041-024-01056-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science and Heat Treatment","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11041-024-01056-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Alloying of Industrial Aluminum Alloys with Scandium
Use of scandium as an alloying element in aluminum alloys is considered. The choice of component systems (alloys) that it is expedient to alloy with scandium to improve the properties of semi-finished products is substantiated. It is shown that alloying aluminum alloys with scandium to improve their mechanical properties may be effective if certain rules for choosing the chemical composition and temperature-time production parameters are observed during preparation of deformed semi-finished products.
期刊介绍:
Metal Science and Heat Treatment presents new fundamental and practical research in physical metallurgy, heat treatment equipment, and surface engineering.
Topics covered include:
New structural, high temperature, tool and precision steels;
Cold-resistant, corrosion-resistant and radiation-resistant steels;
Steels with rapid decline of induced properties;
Alloys with shape memory effect;
Bulk-amorphyzable metal alloys;
Microcrystalline alloys;
Nano materials and foam materials for medical use.