广义变分类中三角傅里叶级数的逼近特性

IF 0.8 Q2 MATHEMATICS
Teimuraz Akhobadze, Shalva Zviadadze
{"title":"广义变分类中三角傅里叶级数的逼近特性","authors":"Teimuraz Akhobadze,&nbsp;Shalva Zviadadze","doi":"10.1007/s43036-024-00392-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper the approximation properties of the partial sums of trigonometric Fourier series for functions within the generalized variation classes <span>\\(BV(p(n)\\uparrow \\infty ,\\varphi )\\)</span> and <span>\\(B\\Lambda (p(n)\\uparrow \\infty ,\\varphi )\\)</span> are investigated. The primary goal is to determine if these classes can provide better rates of uniform convergence compared to the classical Lebesgue estimate. The results show that under certain conditions, this classes offer improved convergence rates. Specifically, when the modulus of continuity <span>\\(\\omega \\)</span> and the sequences <i>p</i>(<i>n</i>) and <span>\\(\\varphi (n)\\)</span> satisfy particular growth conditions, the uniform convergence rate can surpass the classical Lebesgue estimate. The paper also demonstrates that the conditions required for these improved estimates are not mutually exclusive, allowing a wide range of acceptable rates for <span>\\(\\omega \\)</span>. Additionally, a function is constructed within the class <span>\\(H^\\omega \\cap B\\Lambda (p(n) \\uparrow \\infty , \\varphi )\\)</span> (but not in <span>\\(BV(p(n) \\uparrow \\infty , \\varphi )\\)</span>) whose Fourier series converges uniformly, emphasizing the advantage of the <span>\\(B\\Lambda (p(n) \\uparrow \\infty , \\varphi )\\)</span> class.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation properties of trigonometric Fourier series in generalized variation classes\",\"authors\":\"Teimuraz Akhobadze,&nbsp;Shalva Zviadadze\",\"doi\":\"10.1007/s43036-024-00392-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper the approximation properties of the partial sums of trigonometric Fourier series for functions within the generalized variation classes <span>\\\\(BV(p(n)\\\\uparrow \\\\infty ,\\\\varphi )\\\\)</span> and <span>\\\\(B\\\\Lambda (p(n)\\\\uparrow \\\\infty ,\\\\varphi )\\\\)</span> are investigated. The primary goal is to determine if these classes can provide better rates of uniform convergence compared to the classical Lebesgue estimate. The results show that under certain conditions, this classes offer improved convergence rates. Specifically, when the modulus of continuity <span>\\\\(\\\\omega \\\\)</span> and the sequences <i>p</i>(<i>n</i>) and <span>\\\\(\\\\varphi (n)\\\\)</span> satisfy particular growth conditions, the uniform convergence rate can surpass the classical Lebesgue estimate. The paper also demonstrates that the conditions required for these improved estimates are not mutually exclusive, allowing a wide range of acceptable rates for <span>\\\\(\\\\omega \\\\)</span>. Additionally, a function is constructed within the class <span>\\\\(H^\\\\omega \\\\cap B\\\\Lambda (p(n) \\\\uparrow \\\\infty , \\\\varphi )\\\\)</span> (but not in <span>\\\\(BV(p(n) \\\\uparrow \\\\infty , \\\\varphi )\\\\)</span>) whose Fourier series converges uniformly, emphasizing the advantage of the <span>\\\\(B\\\\Lambda (p(n) \\\\uparrow \\\\infty , \\\\varphi )\\\\)</span> class.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00392-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00392-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了广义变分类 \(BV(p(n)\uparrow \infty ,\varphi )\) 和 \(B\Lambda (p(n)\uparrow \infty ,\varphi )\) 内函数的三角傅里叶级数部分和的近似性质。主要目标是确定与经典的 Lebesgue 估计相比,这些类是否能提供更好的均匀收敛率。结果表明,在某些条件下,这些类提供了更好的收敛率。具体来说,当连续性模量(\omega \)和序列 p(n) 和 \(\varphi (n)\) 满足特定的增长条件时,均匀收敛率可以超过经典的 Lebesgue 估计。本文还证明了这些改进的估计值所需的条件并不相互排斥,从而使 \(\omega \) 的可接受率范围更广。此外,在类(H^\omega \cap B\Lambda (p(n) \uparrow \infty , \varphi )\) 中构造了一个函数(但不在类(BV(p(n) \uparrow \infty 、\)的傅里叶级数均匀收敛,强调了(B/Lambda (p(n) \uparrow \infty , \varphi )\) 类的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation properties of trigonometric Fourier series in generalized variation classes

In this paper the approximation properties of the partial sums of trigonometric Fourier series for functions within the generalized variation classes \(BV(p(n)\uparrow \infty ,\varphi )\) and \(B\Lambda (p(n)\uparrow \infty ,\varphi )\) are investigated. The primary goal is to determine if these classes can provide better rates of uniform convergence compared to the classical Lebesgue estimate. The results show that under certain conditions, this classes offer improved convergence rates. Specifically, when the modulus of continuity \(\omega \) and the sequences p(n) and \(\varphi (n)\) satisfy particular growth conditions, the uniform convergence rate can surpass the classical Lebesgue estimate. The paper also demonstrates that the conditions required for these improved estimates are not mutually exclusive, allowing a wide range of acceptable rates for \(\omega \). Additionally, a function is constructed within the class \(H^\omega \cap B\Lambda (p(n) \uparrow \infty , \varphi )\) (but not in \(BV(p(n) \uparrow \infty , \varphi )\)) whose Fourier series converges uniformly, emphasizing the advantage of the \(B\Lambda (p(n) \uparrow \infty , \varphi )\) class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信