基于磁流变液的带 T 形轴的增强型微型触觉转盘

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Yong Hae Heo;Seongho Kim;Sang-Youn Kim
{"title":"基于磁流变液的带 T 形轴的增强型微型触觉转盘","authors":"Yong Hae Heo;Seongho Kim;Sang-Youn Kim","doi":"10.1109/LRA.2024.3481830","DOIUrl":null,"url":null,"abstract":"This letter introduces a tiny haptic dial utilizing magnetorheological fluid (MRF) to enhance its resistive torque feedback. Moreover, we design the T-shaped rotary shaft with bumps and embed it into the haptic dial to enhance its haptic performance (resistive torque). This structure enables two operation modes (shear and flow) of MRF that contribute to the actuation simultaneously in the proposed haptic dial. This structure allows the magnetic flux to flow towards the MRF, helping further maximize the resistive torque. We conduct a simulation to confirm that the magnetic flux generated from a solenoid forms a closed-loop magnetic path without magnetic saturation or leakage in the proposed haptic dial. The resistive torque of the proposed haptic dial varied from 8 N·mm to 47 N·mm as the input current changed from 0 to 300 mA, thus indicating that the proposed haptic dial can create a variety of haptic sensations in a tiny size (diameter: 20 mm; height: 20 mm).","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"10835-10841"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Tiny Haptic Dial With T-Shaped Shaft Based on Magnetorheological Fluid\",\"authors\":\"Yong Hae Heo;Seongho Kim;Sang-Youn Kim\",\"doi\":\"10.1109/LRA.2024.3481830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a tiny haptic dial utilizing magnetorheological fluid (MRF) to enhance its resistive torque feedback. Moreover, we design the T-shaped rotary shaft with bumps and embed it into the haptic dial to enhance its haptic performance (resistive torque). This structure enables two operation modes (shear and flow) of MRF that contribute to the actuation simultaneously in the proposed haptic dial. This structure allows the magnetic flux to flow towards the MRF, helping further maximize the resistive torque. We conduct a simulation to confirm that the magnetic flux generated from a solenoid forms a closed-loop magnetic path without magnetic saturation or leakage in the proposed haptic dial. The resistive torque of the proposed haptic dial varied from 8 N·mm to 47 N·mm as the input current changed from 0 to 300 mA, thus indicating that the proposed haptic dial can create a variety of haptic sensations in a tiny size (diameter: 20 mm; height: 20 mm).\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"10835-10841\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720511/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720511/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

这封信介绍了一种利用磁流变液(MRF)增强阻力矩反馈的微型触觉转盘。此外,我们还设计了带有凹凸的 T 形旋转轴,并将其嵌入触觉转盘,以增强其触觉性能(阻性扭矩)。这种结构实现了 MRF 的两种工作模式(剪切和流动),可同时促进拟议触觉转盘的致动。这种结构允许磁通流向 MRF,有助于进一步最大化电阻扭矩。我们进行了仿真,以确认螺线管产生的磁通在拟议的触觉转盘中形成了闭环磁路,没有磁饱和或漏磁现象。当输入电流从 0 mA 变为 300 mA 时,建议的触觉转盘的电阻力矩从 8 N-mm 变为 47 N-mm,这表明建议的触觉转盘可以在极小的尺寸(直径:20 mm;高度:20 mm)内产生多种触觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Tiny Haptic Dial With T-Shaped Shaft Based on Magnetorheological Fluid
This letter introduces a tiny haptic dial utilizing magnetorheological fluid (MRF) to enhance its resistive torque feedback. Moreover, we design the T-shaped rotary shaft with bumps and embed it into the haptic dial to enhance its haptic performance (resistive torque). This structure enables two operation modes (shear and flow) of MRF that contribute to the actuation simultaneously in the proposed haptic dial. This structure allows the magnetic flux to flow towards the MRF, helping further maximize the resistive torque. We conduct a simulation to confirm that the magnetic flux generated from a solenoid forms a closed-loop magnetic path without magnetic saturation or leakage in the proposed haptic dial. The resistive torque of the proposed haptic dial varied from 8 N·mm to 47 N·mm as the input current changed from 0 to 300 mA, thus indicating that the proposed haptic dial can create a variety of haptic sensations in a tiny size (diameter: 20 mm; height: 20 mm).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信