{"title":"BEVNav:通过鸟瞰时空对比学习实现机器人自主导航","authors":"Jiahao Jiang;Yuxiang Yang;Yingqi Deng;Chenlong Ma;Jing Zhang","doi":"10.1109/LRA.2024.3482190","DOIUrl":null,"url":null,"abstract":"Goal-driven mobile robot navigation in map-less environments requires effective state representations for reliable decision-making. Inspired by the favorable properties of Bird's-Eye View (BEV) in point clouds for visual perception, this paper introduces a novel navigation approach named BEVNav. It employs deep reinforcement learning to learn BEV representations and enhance decision-making reliability. First, we propose a self-supervised spatial-temporal contrastive learning approach to learn BEV representations. Spatially, two randomly augmented views from a point cloud predict each other, enhancing spatial features. Temporally, we combine the current observation with consecutive frames' actions to predict future features, establishing the relationship between observation transitions and actions to capture temporal cues. Then, incorporating this spatial-temporal contrastive learning in the Soft Actor-Critic reinforcement learning framework, our BEVNav offers a superior navigation policy. Extensive experiments demonstrate BEVNav's robustness in environments with dense pedestrians, outperforming state-of-the-art methods across multiple benchmarks.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"10796-10802"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BEVNav: Robot Autonomous Navigation via Spatial-Temporal Contrastive Learning in Bird's-Eye View\",\"authors\":\"Jiahao Jiang;Yuxiang Yang;Yingqi Deng;Chenlong Ma;Jing Zhang\",\"doi\":\"10.1109/LRA.2024.3482190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Goal-driven mobile robot navigation in map-less environments requires effective state representations for reliable decision-making. Inspired by the favorable properties of Bird's-Eye View (BEV) in point clouds for visual perception, this paper introduces a novel navigation approach named BEVNav. It employs deep reinforcement learning to learn BEV representations and enhance decision-making reliability. First, we propose a self-supervised spatial-temporal contrastive learning approach to learn BEV representations. Spatially, two randomly augmented views from a point cloud predict each other, enhancing spatial features. Temporally, we combine the current observation with consecutive frames' actions to predict future features, establishing the relationship between observation transitions and actions to capture temporal cues. Then, incorporating this spatial-temporal contrastive learning in the Soft Actor-Critic reinforcement learning framework, our BEVNav offers a superior navigation policy. Extensive experiments demonstrate BEVNav's robustness in environments with dense pedestrians, outperforming state-of-the-art methods across multiple benchmarks.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"10796-10802\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720445/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720445/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
BEVNav: Robot Autonomous Navigation via Spatial-Temporal Contrastive Learning in Bird's-Eye View
Goal-driven mobile robot navigation in map-less environments requires effective state representations for reliable decision-making. Inspired by the favorable properties of Bird's-Eye View (BEV) in point clouds for visual perception, this paper introduces a novel navigation approach named BEVNav. It employs deep reinforcement learning to learn BEV representations and enhance decision-making reliability. First, we propose a self-supervised spatial-temporal contrastive learning approach to learn BEV representations. Spatially, two randomly augmented views from a point cloud predict each other, enhancing spatial features. Temporally, we combine the current observation with consecutive frames' actions to predict future features, establishing the relationship between observation transitions and actions to capture temporal cues. Then, incorporating this spatial-temporal contrastive learning in the Soft Actor-Critic reinforcement learning framework, our BEVNav offers a superior navigation policy. Extensive experiments demonstrate BEVNav's robustness in environments with dense pedestrians, outperforming state-of-the-art methods across multiple benchmarks.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.