Jose Manuel Rivas-Moscoso;Farhad Arpanaei;Gabriel Otero Perez;Jose David Martinez Jimenez;Juan Pedro Fernandez-Palacios;Oscar Gonzalez de Dios;Luis Miguel Contreras;Alfonso Sanchez-Macian;Jose Alberto Hernandez;David Larrabeiti;Jesus Folgueira
{"title":"TEFNET24:用于边缘到核心传输的参考分组光网络拓扑结构","authors":"Jose Manuel Rivas-Moscoso;Farhad Arpanaei;Gabriel Otero Perez;Jose David Martinez Jimenez;Juan Pedro Fernandez-Palacios;Oscar Gonzalez de Dios;Luis Miguel Contreras;Alfonso Sanchez-Macian;Jose Alberto Hernandez;David Larrabeiti;Jesus Folgueira","doi":"10.1364/JOCN.533131","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce TEFNET24, a reference multi-layer hierarchical network topology that spans from access to core networks, specifically designed to meet the demands of beyond 5G and prepared for next-generation 6G communication systems. This topology, inspired by the actual network deployments of Telefónica in medium-sized countries (or large federal states) in Europe and America, integrates both IP and optical (DWDM) layers to provide a comprehensive framework for network design, optimization, and analysis. Our primary contribution is the development of an open-source benchmarking network, accessible to both researchers and industry professionals. This resource aims to facilitate the study and advancement of integrated IP and optical networks, allowing researchers to address key challenges such as traffic aggregation, latency reduction, cost efficiency, and support for advanced applications. We provide guidelines for utilizing this benchmark network, enabling users to evaluate and enhance their solutions for AI-driven network management, ultra-reliable low-latency communication, enhanced mobile broadband, and massive machine-type communication. By sharing this detailed and practical benchmarking network, we seek to foster innovation and collaboration within the optical network community, driving forward the capabilities and performance of future communication networks. A dataset with TEFNET24 details is provided.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 11","pages":"G28-G39"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TEFNET24: reference packet optical network topology for edge to core transport\",\"authors\":\"Jose Manuel Rivas-Moscoso;Farhad Arpanaei;Gabriel Otero Perez;Jose David Martinez Jimenez;Juan Pedro Fernandez-Palacios;Oscar Gonzalez de Dios;Luis Miguel Contreras;Alfonso Sanchez-Macian;Jose Alberto Hernandez;David Larrabeiti;Jesus Folgueira\",\"doi\":\"10.1364/JOCN.533131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce TEFNET24, a reference multi-layer hierarchical network topology that spans from access to core networks, specifically designed to meet the demands of beyond 5G and prepared for next-generation 6G communication systems. This topology, inspired by the actual network deployments of Telefónica in medium-sized countries (or large federal states) in Europe and America, integrates both IP and optical (DWDM) layers to provide a comprehensive framework for network design, optimization, and analysis. Our primary contribution is the development of an open-source benchmarking network, accessible to both researchers and industry professionals. This resource aims to facilitate the study and advancement of integrated IP and optical networks, allowing researchers to address key challenges such as traffic aggregation, latency reduction, cost efficiency, and support for advanced applications. We provide guidelines for utilizing this benchmark network, enabling users to evaluate and enhance their solutions for AI-driven network management, ultra-reliable low-latency communication, enhanced mobile broadband, and massive machine-type communication. By sharing this detailed and practical benchmarking network, we seek to foster innovation and collaboration within the optical network community, driving forward the capabilities and performance of future communication networks. A dataset with TEFNET24 details is provided.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 11\",\"pages\":\"G28-G39\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10734064/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10734064/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们介绍了 TEFNET24,这是一种从接入网到核心网的参考多层分级网络拓扑结构,专为满足 5G 之后的需求而设计,并为下一代 6G 通信系统做好了准备。该拓扑受西班牙电信公司在欧洲和美洲中型国家(或大型联邦州)实际网络部署的启发,集成了 IP 层和光(DWDM)层,为网络设计、优化和分析提供了一个全面的框架。我们的主要贡献是开发了一个开源基准网络,供研究人员和行业专业人员使用。该资源旨在促进对集成 IP 和光网络的研究和发展,使研究人员能够应对流量聚合、降低延迟、成本效率和支持高级应用等关键挑战。我们提供了使用该基准网络的指南,使用户能够评估和改进其解决方案,以实现人工智能驱动的网络管理、超可靠的低延迟通信、增强型移动宽带和大规模机器型通信。通过共享这一详细而实用的基准网络,我们力求促进光网络社区内的创新与合作,推动未来通信网络的能力和性能向前发展。我们提供了包含 TEFNET24 详细信息的数据集。
TEFNET24: reference packet optical network topology for edge to core transport
In this paper, we introduce TEFNET24, a reference multi-layer hierarchical network topology that spans from access to core networks, specifically designed to meet the demands of beyond 5G and prepared for next-generation 6G communication systems. This topology, inspired by the actual network deployments of Telefónica in medium-sized countries (or large federal states) in Europe and America, integrates both IP and optical (DWDM) layers to provide a comprehensive framework for network design, optimization, and analysis. Our primary contribution is the development of an open-source benchmarking network, accessible to both researchers and industry professionals. This resource aims to facilitate the study and advancement of integrated IP and optical networks, allowing researchers to address key challenges such as traffic aggregation, latency reduction, cost efficiency, and support for advanced applications. We provide guidelines for utilizing this benchmark network, enabling users to evaluate and enhance their solutions for AI-driven network management, ultra-reliable low-latency communication, enhanced mobile broadband, and massive machine-type communication. By sharing this detailed and practical benchmarking network, we seek to foster innovation and collaboration within the optical network community, driving forward the capabilities and performance of future communication networks. A dataset with TEFNET24 details is provided.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.